Ink-Jet Applications, Physics, and Modeling - an Industrial / Applied Research View

David B. Wallace
MicroFab Technologies, Inc.
Plano, Texas
dwallace@microfab.com
www.microfab.com
Ink-Jet Microdispensing

Advantages

- Direct-write of materials
 - data-driven (flexible – no masks, low cost)
 - additive (environmentally friendly, low cost)
 - non-contact

- Piezoelectric Ink-Jet Technology
 - single jets and arrays
 - wide operating temperature range (0-370°C)
 - wide range of materials
 - biological, metals, polymers, fluxes …
 - wide range of resolutions
 - 10-120um drops + N drops per spot
 - wide range of rates
 - 1Hz - 1MHz
Solder Jet

Data-Driven
Ink-Jet Microdispensing

- **Applications**
 - Electronics manufacturing
 - interconnects, passives, conductors, dielectrics, adhesives
 - Photonics
 - lens arrays, display materials, waveguides, NLO materials
 - Medical Diagnostics
 - immuno and DNA diagnostics, genomics, proteomics, drug discovery
 - Medical Procedures
 - olfaction, laser surgery, drug delivery, tissue engineering
 - Other
 - pest control, ink-jet printing, combi-chem
Electronics Manufacturing Applications

Demand Mode Solder Jet™

Drop Size Modulation: 60 & 100µm drops from same device using different waveforms
Solder Jet
1440 pad microprocessor test vehicle, 60µm bumps
Solder Jet

Print-on-the-Fly, 100µm bumps, 250µm centers, 400/sec.
Solder Jet

Model This!

MicroFab

Poulakakos, Megaridis, Wadvogel

MicroFab

Technologies, Inc.
Printed Solder Interconnects

MEMS Applications – Modeling Challenges

Printed Solder Columns

- Dielectric Layer
- Copper Conductor

60µm towers

3-D structure, 60µm feature size

24µm towers
Electronics Manufacturing Applications

Embedded Passives

Conductive Polymer Resistors, <200?/sq, ~1mm long
Photonics Manufacturing Applications

90µm spots and line of phosphor particles

Simulated GRIN lenslet: how is this possible?

100µm waveguides / splitter

light emitting polymer

250µm hemi-elliptical lenses
Photonics Manufacturing Applications
300µm simulated AGRIN lens

- Simulated 300 micron agrin lenslet
- Multidrop / multiple fluid sphere formation with axial (only) gradient. Model this!
Photonics Manufacturing Applications

Solder & microlens on VCSEL: 125μm square pad (solder) 17 μm emitter

Portion of 19,000 300μm lenses printed on glass wafer, for coupling to matching GaAs micro lasers & photodetectors

Array of 80μm spot of optical epoxy doped with fluorescing probe, printed onto 480: m fiber bundle.
Medical Applications

Genetics, Proteomics, Diagnostics

10 fluid ink-jet printhead and printing results (200 µm spacings)

printhead detail (140um grooves)

100um spots of DNA on 200um centers

anti-cytochrome C spots, 40µm in diameter.
Proteomic Analysis

2-D Gel In-Situ Digestion /Analysis on Membrane

Proteome System Ltd.’s Chemical Printer for peptide mass fingerprinting
Olfaction Diagnostics

- Olfactometer
 - Research into early onset of neurodegenerative diseases (e.g. Alzheimer's)
Combinatorial Odor Synthesis

Internet Ready
Ink-Jet Printing

- Microfabricated structures 170um pitch
- Polymer orifice array, 170um pitch
- Real-time drop volume modulation results
- 120 channel printhead with onboard drive electronics
- Printhead in operation

MicroFab Technologies, Inc.
Modeling Ink-Jet Systems

Difficulties in Systems Models

- Multiple types of mathematical regimes
 - Elliptical, parabolic, and hyperbolic equation sets
 - Moving boundaries, phase change, fluid / structure interaction
- Wide range of time scales in different regimes
 - Sub-microsecond to seconds
- Properties at physical and temporal microscale
 - Dynamic surface tension in microsecond regime
 - Viscosity at MHz shear rates; micron scale particles/cells
 - Microscale piezoelectric properties / uniformity
- Mass removal / separation
- Array systems
 - Cross-talk effects, location of computational boundaries
Modeling Ink-Jet Systems

Drive Electronics (elec. circuits) → Piezoelectric Structure (electrostatics, piezoelectrics, solid mechanics)

Fluid Delivery System (Low Re flow) → Acoustic Energy Transfer Zone (fluid acoustics) → Acoustic Energy Transport (fluid acoustics)

Drop Impact (Low Re flow, + ...) → Drop Formation (Low Re, free surface flow)
Subsystems Modeling

Efficient but Hazardous

Channel Height, um

Pressure

Energy

Droplet Volume

Droplet Velocity

Droplet Momentum

Value Normalized

MicroFab Technologies, Inc.
Goals of Modeling Efforts

Levels of Modeling Results

- Obtain insight into the physics of the system being modeled
- Determine the effects of specific variables
 - qualitative performance prediction OK
- Determine optimum configuration parameters
 - qualitative performance prediction OK
- Manufacturing materials/process selection
 - qualitative performance prediction OK
- In-process manufacturing test support
 - qualitative performance prediction OK
- Quantitative performance prediction
Orifice Plate Thickness Effects

Maximum Velocity and Frequency

shared wall satellites above 17V for 2 mil thick plate, above 20V for 1 mil thick plate
Agenda

• Industrial Application of Ink-Jet Technology
• Modeling of Ink-Jet Systems
• Modeling in an Industrial Environment
• Case Study: Shared Wall / Shear Mode Printhead
Shared Wall / Shear Mode Printhead

3-D piezoelectric structures (shared wall), 170um pitch

boundary condition: polymer orifice array, 170um pitch

drive waveform: simplest = 5 degrees of freedom

120 channel printhead with onboard drive electronics

printhead in operation

MicroFab Technologies, Inc.
Shared Wall / Shear Mode Printhead

Basic Structure, Fields, and Motion

- PZT
- Electric Field
- Poling Directions
- Metalization & Bond Line
- Fluid Channel
- Inactive Material
Model Components

Shared Wall / Shear Mode Printhead

- **Structural Motion**
 - coupled electric field, piezoelectric, structural
 - static analysis
- **Fluid / Structure Coupling**
 - quasi-static assumption
 - change from pressure / wall position system to pressure rise / compliance
- **Fluid Acoustics**
 - method of characteristics solution
 - frequency dependent friction
- **Boundary Conditions**
 - orifice flow model from steady flow data; SOR
 - manifold pressure from steady flow model
- **Drop Formation Model**
 - various
- **Drop Impact Model**
 - “Spread Factor”
Model Block Diagram

- Structural, Electrical, Piezoelectric Static Solution
- Pressure Rise per Volt
- Compliance
- Waveform (voltage vs. time)
- Inlet Boundary Condition
- Method of Characteristic Solution
- Orifice Flow Model
- Drop Impact Model
- Drop Formation Model
Structural Model

Elements and Mesh Geometry

- unpoled PZT
- PZT
- fluid
- PZT
- Poling Direction
- artificial boundary
- cyclical boundary condition
- metalization & bond line

MicroFab Technologies, Inc.
Structural Model
Voltage Distribution and Displacement

unpoled PZT

metalization & bond line

PZT

fluid

PZT

MicroFab Technologies, Inc.
Structural Model
Electric Field Distribution

unpoled PZT

PZT

metalization & bond line

fluid

MicroFab Technologies, Inc.

Values:
- 6.73E-07
- 1.43E-04
- 2.85E-04
- 4.27E-04
- 5.69E-04
- 7.12E-04
- 8.54E-04
- 9.96E-04
- 1.14E-03
- 1.28E-03
Method of Characteristics Solution

Pressure vs. Time Solution

- Time = 26 us (after voltage fall)
- Time = 63 us (end of waveform)
Orifice Flow Model

Orifice Flow Model and Data

Discharge Coefficient

Reynolds Number

- data
- model
Drop Formation and Impact Models

- Drop formation
 - Method: Adams & Roy
 - Case: solder

- Droplet impact & solidification
 - Method: Poulakakos et al.
 - solder on Si
Fluid System Model

Jet Velocity = 5 m/s

Array Size & Fluid
- 0.25”, IPA
- 1” IPA
- 0.25” ink (4cp)
- 1” ink (4cp)

Pressure Drop

Orifice	Channel	Manifold	Inlet	Line	Filter	TOTAL
0.25”, IPA | 1” IPA | 0.25” ink (4cp) | 1” ink (4cp)