Robust Discrete, Dynamic Optimization and Network Flows

Dimitris Bertsimas and Melvyn Sim
Operations Research, MIT

October, 2002
1 Structure

- Motivation
- Data Uncertainty
- Robust Mixed Integer Programming
- Robust 0-1 Programming
- Robust Approximation Algorithms
- Robust Network Flows
- Robust Inventory Control
- Experimental Results
- Summary and Conclusions

2 Motivation

- The classical paradigm in optimization is to develop a model that assumes that the input data is precisely known and equal to some nominal values. This approach, however, does not take into account the influence of data uncertainties on the quality and feasibility of the model.
- Can we design solution approaches that are immune to data uncertainty, that is, they are robust?
- Ben-Tal and Nemirovski (2000):

 In real-world applications of Linear Programming (Net Lib library), one cannot ignore the possibility that a small uncertainty in the data can make the usual optimal solution completely meaningless from a practical viewpoint.

2.1 Literature

- Flexible adjustment of conservatism
- Nonlinear convex models
- Not extendable to discrete optimization
3 Goal

Develop an approach to address data uncertainty for discrete optimization problems that:

- It allows to control the degree of conservatism of the solution;
- It is computationally tractable both practically and theoretically.

4 Data Uncertainty

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
& \quad l \leq x \leq u \\
& \quad x_i \in \mathbb{Z}, \quad i = 1, \ldots, k,
\end{align*}
\]

- WLOG data uncertainty affects only \(A \) and \(c \), but not the vector \(b \).
- (Uncertainty for matrix \(A \)): \(a_{ij}, \ j \in J_i \) is independent, symmetric and bounded random variable (but with unknown distribution) \(\tilde{a}_{ij}, \ j \in J_i \) that takes values in \([a_{ij} - \tilde{a}_{ij}, a_{ij} + \tilde{a}_{ij}]\).
- (Uncertainty for cost vector \(c \)): \(c_j, \ j \in J_0 \) takes values in \([c_j, c_j + d_j]\).

5 Robust MIP

- Consider an integer \(\Gamma_i \in [0, |J_i|], \ i = 0, 1, \ldots, m. \)
- \(\Gamma_i \) adjusts the robustness of the proposed method against the level of conservativeness of the solution.

Speaking intuitively, it is unlikely that all of the \(a_{ij}, \ j \in J_i \) will change. We want to be protected against all cases that up to \(\Gamma_i \) of the \(a_{ij} \)'s are allowed to change.

- Nature will be restricted in its behavior, in that only a subset of the coefficients will change in order to adversely affect the solution.
- We will guarantee that if nature behaves like this then the robust solution will be feasible deterministically. Even if more than \(\Gamma_i \) change, then the robust solution will be feasible with very high probability.
5.1 Problem

\[
\begin{align*}
\text{minimize} & \quad c^T x + \max_{(s_i, s_0) \in \mathcal{S}} \left\{ \sum_{j \in S_0} d_j |x_j| \right\} \\
\text{subject to} & \quad \sum_{j \in S_i} a_{ij} x_j + \max_{(s_i, s_0) \in \mathcal{S}} \left\{ \sum_{j \in S_0} \hat{a}_{ij} |x_j| \right\} \leq b_i, \quad \forall i \\
& \quad x_i \in \mathbb{Z}, \quad \forall i = 1, \ldots, k.
\end{align*}
\]

5.2 Theorem 1

The robust problem can be reformulated as an equivalent MIP:

\[
\begin{align*}
\text{minimize} & \quad c^T x + z_0 \Gamma_0 + \sum_{j \in J_0} p_{0j} \\
\text{subject to} & \quad \sum_{j \in J_i} a_{ij} x_j + z_i \Gamma_i + \sum_{j \in J_i} p_{ij} \leq b_i, \quad \forall i \\
& \quad z_0 + p_{0j} \geq d_j y_j, \quad \forall j \in J_0 \\
& \quad z_i + p_{ij} \geq \hat{a}_{ij} y_j, \quad \forall i \neq 0, j \in J_i \\
& \quad p_{ij}, y_j, z_i \geq 0, \quad \forall i, j \in J_i \\
& \quad -y_j \leq x_j \leq y_j, \quad \forall j \\
& \quad l_j \leq x_j \leq u_j, \quad \forall j \\
& \quad x_i \in \mathbb{Z}, \quad \forall i = 1, \ldots, k.
\end{align*}
\]

5.3 Proof

Given a vector \(x^* \), we define:

\[
\beta_i(x^*) = \max_{(s_i, s_0) \in \mathcal{S}} \left\{ \sum_{j \in S_0} \hat{a}_{ij} |x_j^*| \right\}.
\]

This equals to:

\[
\beta_i(x^*) = \max \sum_{j \in J_i} \hat{a}_{ij} |x_j^*| z_{ij} \\
\text{s.t.} \quad \sum_{j \in J_i} z_{ij} \leq \Gamma_i \\
& \quad 0 \leq z_{ij} \leq 1, \quad \forall i, j \in J_i
\]

Dual:

\[
\beta_i(x^*) = \min \sum_{j \in J_i} p_{ij} + \Gamma_i z_i \\
\text{s.t.} \quad z_i + p_{ij} \geq \hat{a}_{ij} |x_j^*| \quad \forall j \in J_i \\
& \quad p_{ij} \geq 0, \quad \forall j \in J_i \\
& \quad z_i \geq 0, \quad \forall i.
\]
| $|J_i|$ | Γ_i |
|------|--------|
| 5 | 5 |
| 10 | 8.3565 |
| 100 | 24.263 |
| 200 | 33.899 |

Table 1: Choice of Γ_i as a function of $|J_i|$ so that the probability of constraint violation is less than 1%.

5.4 Size

- Original Problem has n variables and m constraints
- Robust counterpart has $2n + m + l$ variables, where $l = \sum_{i=0}^{m} |J_i|$ is the number of uncertain coefficients, and $2n + m + l$ constraints.

5.5 Probabilistic Guarantee

5.5.1 Theorem 2

Let x^* be an optimal solution of robust MIP.

(a) If A is subject to the model of data uncertainty U:

$$\Pr \left(\sum_j a_{ij} x_j^* > b_i \right) \leq \frac{1}{2^n} \left\{ (1 - \mu) \sum_{i=0}^{n} \binom{n}{i} + \mu \sum_{i=1}^{n} \binom{n}{i} \right\},$$

$n = |J_i|, \nu = \frac{n}{|U|}$ and $\mu = \nu - |U|; bound \ is \ tight.$

(b) As $n \to \infty$

$$\frac{1}{2^n} \left\{ (1 - \mu) \sum_{i=0}^{n} \binom{n}{i} + \mu \sum_{i=1}^{n} \binom{n}{i} \right\} \sim 1 - \Phi \left(\frac{|J_i| - 1}{\sqrt{n}} \right),$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp \left(-\frac{y^2}{2} \right) \, dy.$$
Figure 1: Quality of approximation

- WLOG $d_1 \geq d_2 \geq \ldots \geq d_n$.

6.1 Remarks
- Examples: the shortest path, the minimum spanning tree, the minimum assignment, the traveling salesman, the vehicle routing and matroid intersection problems.
- Other approaches to robustness are hard. Scenario based uncertainty:

$$\begin{align*}
\text{minimize} & \quad \max(c'_1 x, c'_2 x) \\
\text{subject to} & \quad x \in X.
\end{align*}$$

is NP-hard for the shortest path problem.
6.2 Approach

Primal: $Z^* = \min_{x \in X} c^T x + \max \sum_{j} d_j x_j u_j$

s.t. $0 \leq u_j \leq 1, \quad \forall j$

$\sum_{j} u_j \leq \Gamma$

Dual: $Z^* = \min_{x \in X} c^T x + \min \theta \Gamma + \sum_{j} y_j$

s.t. $y_j + \theta \geq d_j x_j, \quad \forall j$

$y_j, \theta \geq 0$

6.3 Algorithm A

- Solution: $y_j = \max(d_j x_j - \theta, 0)$

\[
Z^* = \min_{x \in X, \theta \geq 0} \theta \Gamma + \sum_{j} (c_j x_j + \max(d_j x_j - \theta, 0))
\]

- Since $X \subset \{0, 1\}^n$,

$$\max(d_j x_j - \theta, 0) = \max(d_j - \theta, 0) x_j$$

\[
Z^* = \min_{x \in X, \theta \geq 0} \theta \Gamma + \sum_{j} (c_j + \max(d_j - \theta, 0)) x_j
\]

- $d_1 \geq d_2 \geq \ldots \geq d_n \geq d_{n+1} = 0$.

- For $d_i \geq \theta \geq d_{i+1}$,

$$\min_{x \in X, \theta \geq d_i} \theta \Gamma + \sum_{j=1}^{n} c_j x_j + \sum_{j=1}^{l} (d_j - \theta) x_j = d_i \Gamma + \min_{x \in X} \sum_{j=1}^{n} c_j x_j + \sum_{j=1}^{l} (d_j - d_l) x_j = Z_l$$

\[
Z^* = \min_{l=1, \ldots, n+1} d_l \Gamma + \min_{x \in X} \sum_{j=1}^{n} c_j x_j + \sum_{j=1}^{l} (d_j - d_l) x_j.
\]
6.4 Theorem 3
- Algorithm A correctly solves the robust 0-1 optimization problem.
- It requires at most $|J| + 1$ solutions of nominal problems. Thus, if the nominal problem is polynomially time solvable, then the robust 0-1 counterpart is also polynomially solvable.
- Robust minimum spanning tree, minimum assignment, minimum matching, shortest path and matroid intersection, are polynomially solvable.

7 Robust Approximation Algorithms
- If the nominal problem is α-approximable, is the robust counterpart also α-approximable?
- Input: Vectors $c, d \in \mathbb{R}^n_+$, an integer Γ, and a polynomial time algorithm H that returns a solution Z_B: $Z_B \leq \alpha Z$, where $Z = \min \ c'x$ subject to $x \in X \subseteq \{0, 1\}^n$ for all $c \geq 0$.
- Output: A solution $x^B \in X$ such that $Z_B = c'x^B + \max_{\{s \subseteq J \mid |s| = \Gamma\}} \sum_{j \in S} d_j x^B_j$ satisfies $Z^* \leq Z_B \leq \alpha Z^*$.

7.1 Algorithm B
- Use an α-approximate solution to
 \[\min_{x \in X} \sum_{j=1}^n c_j x_j + \sum_{j=1}^l (d_j - d_l) x_j. \]
- Theorem 4: Overall algorithm is α-approximate.

8 Robust Network Flows
- Nominal
 \[\min \sum_{(i,j) \in A} c_{ij} x_{ij} \]
 \[\text{s.t. } \sum_{(j \mid (i,j) \in A)} x_{ij} - \sum_{(j \mid (j,i) \in A)} x_{ji} = b_i \quad \forall i \in \mathcal{N} \]
 \[0 \leq x_{ij} \leq u_{ij} \quad \forall (i,j) \in \mathcal{A}. \]
- X set of feasible solutions flows.
- Robust
 \[Z^* = \min \ c'x + \max_{\{s \subseteq \mathcal{A} \mid |s| \leq \Gamma\}} \sum_{(i,j) \in s} d_{ij} x_{ij} \]
 subject to $x \in X$.

Slide 22
Slide 23
Slide 24
Slide 25
8.1 Reformulation

\[Z^* = \min_{\theta \geq 0} Z(\theta), \]

\[Z(\theta) = \Gamma \theta + \min \quad c'x + \sum_{(i,j) \in A} p_{ij} \]

subject to

\[p_{ij} \geq d_{ij} x_{ij} - \theta \quad \forall (i, j) \in A \]

\[p_{ij} \geq 0 \quad \forall (i, j) \in A \]

\[x \in X. \]

- Equivalently

\[Z(\theta) = \Gamma \theta + \min \quad c'x + \sum_{(i,j) \in A} d_{ij} \max \left(x_{ij} - \frac{\theta}{d_{ij}}, 0 \right) \]

subject to \(x \in X. \)

8.2 Network Reformulation

Theorem: For fixed \(\theta \) we can solve the robust problem as a network flow problem

![Network Flow Diagram](image)

Figure 2: Construction

8.3 Complexity

- \(Z(\theta) \) is a convex function and for all \(\theta_1, \theta_2 \geq 0 \), we have

\[|Z(\theta_1) - Z(\theta_2)| \leq |A||\theta_1 - \theta_2|. \]
• For any fixed $\Gamma \leq |A|$ and every $\epsilon > 0$, we can find a solution $\hat{x} \in X$ with robust objective value
 \[
 \tilde{Z} = c^T \hat{x} + \max_{(\mathcal{S}, |A| \geq |S| \geq \Gamma)} \sum_{(i,j) \in S} d_{ij} \hat{x}_{ij}
 \]
such that
 \[
 Z^* \leq \tilde{Z} \leq (1 + \epsilon)Z^*
 \]
by solving $2[\log_2(|A|f_e)] + 3$ network flow problems, where $f = \max\{u_{ij} d_{ij} : (i,j) \in A\}$.

9 Robust Inventory Control

• Joint work with Aurelie Thiele, MIT
• Single station
• State x_k: stock available at the beginning of the kth period
• Control u_k: stock ordered at the beginning of the kth period
• Randomness w_k: demand during the kth period
• Dynamics: $x_{k+1} = x_k + u_k - w_k$
• Cost: $cu_k + \max(hx_{k+1}, -p x_{k+1})$

9.1 Modeling Randomness

• $z_k = (w_k - \bar{w}_k)/\bar{w}_k \in [-1, 1]$.
• Uncertainty budget $\sum_{i=0}^{\Gamma} |z_i| \leq \Gamma_k$.
• Theorem: Robust problem optimal ordering policy is also (S, S), or base-stock, i.e., there exists a threshold sequence (S_k) such that, at each time period k, it is optimal to order $S_k = x_k$ if $x_k < S_k$ and 0, otherwise. S_k given in closed form.

9.2 Fixed Costs

• If there are fixed ordering costs, optimal policy for robust problem is (s, S), i.e., there exists a threshold sequence (s_k, S_k) such that, at each time period k, it is optimal to order $S_k = x_k$ if $x_k < s_k$ and 0 otherwise, with $s_k \leq S_k$.
• Constrain to the stochastic case.
9.3 Multiple stations

- Robust counterpart recovers the Clark and Scarf solution for echelons
- Robust solutions extends to the case of fixed costs in all stations
- Extensions to general supply chains; Problem reduces to a deterministic LP or MIP; computationally tractable.
- Major messages: numerical tractability not affected by dimensionality in sharp contrast to the stochastic case
- Insightful policies that are the same qualitatively with the stochastic case; closed form computable.

10 Experimental Results

10.1 Knapsack Problems

\[
\begin{align*}
\text{maximize} & \quad \sum_{i \in N} c_i x_i \\
\text{subject to} & \quad \sum_{i \in N} w_i x_i \leq b \\
& \quad \begin{cases}
\text{x} \in \{0, 1\}^n.
\end{cases}
\end{align*}
\]

- \(\tilde{w}_i \) are independently distributed and follow symmetric distributions in \([w_i - \delta_i, w_i + \delta_i]\);
- \(c \) is not subject to data uncertainty.

10.1.1 Data

- \(|N| = 200, \ b = 4000, \)
- \(w_i \) randomly chosen from \(\{20, 21, \ldots, 29\}\).
- \(c_i \) randomly chosen from \(\{16, 17, \ldots, 77\}\).
- \(\delta_i = 0.1 w_i. \)

10.1.2 Results

10.2 Robust Sorting

\[
\begin{align*}
\text{minimize} & \quad \sum_{i \in N} c_i x_i \\
\text{subject to} & \quad \sum_{i \in N} x_i = k \\
& \quad \begin{cases}
\text{x} \in \{0, 1\}^n.
\end{cases}
\end{align*}
\]
\[
Z^*(\Gamma) = \text{minimize} \quad c'x + \max_{|\mathcal{S} \subseteq \{i \mid f_i(\Gamma) \leq 0\}} \sum_{j \in \mathcal{S}} d_j x_j \\
\text{subject to} \quad \sum_{i \in \mathcal{N}} x_i = k \\
\quad x \in \{0, 1\}^n.
\]

\[\]

10.2.1 Data

- \(|N| = 200;\)
- \(k = 100;\)
- \(c_j \sim U[50, 200]; d_j \sim U[20, 200];\)
- For testing robustness, generate instances such that each cost component independently deviates with probability \(\rho = 0.2\) from the nominal value \(c_j\) to \(c_j + d_j\).

10.2.2 Results

10.3 Shortest Path

11 Conclusions

- Robust counterpart of a MIP remains a MIP, of comparable size.
Figure 3: Randomly generated digraph.

- Approach permits flexibility of adjusting the level of conservatism in terms of probabilistic bound of constraint violation.
- For polynomial solvable 0-1 optimization problems with cost uncertainty, the robust counterpart is polynomial solvable.
- For NP-hard 0-1 discrete problems that have α-approximation algorithm, the robust counterpart is also α-approximable.
- Robust network flows are solvable as a series of nominal network flow problems.
- Robust inventory control is numerically tractable even for large dimensions, and offers same policies as the stochastic case.
- Robust optimization is tractable for stochastic optimization problems without the curse of dimensionality.
Figure 4: Influence of Γ on the distribution of path cost for $\rho = 0.1$.