One Size Fits All?:
Computational Tradeoffs in Mixed Integer Programming Software

Bob Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling

ILOG, Inc.
A MIP Code is a Bag of Tricks

- Presolve
- Cutting planes
 - Gomory cuts
 - Knapsack cuts
 - Etc.
- Node presolve
- Heuristics
- Node selection strategy
- Etc.
Typical Path to Widespread Adoption of a New Technique

1. Improvement on a test set

2. Evaluation and tuning on a wider problem set

3. Implementation and deployment in a MIP code

4. Modelers (silently) benefit
A Few Examples
[Bixby, Fenelon, Gu, Rothberg, Wunderling, 2002]

- Cuts 53.7X
 - Gomory 2.5X
 - MIR 1.8X
 - Knapsack 1.4X
 - Flow covers 1.2X
 - Implied bounds 1.2X
 - ...

- Presolve 10.8X
 - Heuristics 1.4X
 - Node presolve 1.3X
 - Probed dives 1.1X
Unlikely Path to Widespread Adoption of a New Technique

1. Improvement on a test set

2. Overall degradation on a wider problem set

3. Not implemented in a MIP Code

4. Modeler reads paper and implements technique
Another Unlikely Path to Widespread Adoption of a New Technique

1. Improvement on a test set
2. Overall degradation on a wider problem set
3. Implemented in a MIP code anyway
4. Modeler:
 1. Reads documentation or paper
 2. Recognizes that technique will be effective on his models
 3. Enables non-default option in MIP code
Example: Probing
[Brearley, Mitra, Williams, 1975]

- Explore logical consequences of fixing binary variables to 0/1
 - Variable fixing
 - Coefficient lifting
 - Implied bound cuts

- Model mod011.mps
 - Moderately difficult model from MIPLIB set
Model mod011.mps without probing

<table>
<thead>
<tr>
<th>Node</th>
<th>Left</th>
<th>Objective</th>
<th>IInf</th>
<th>Best Integer</th>
<th>Best Node</th>
<th>ItCnt</th>
<th>Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-6.2082e+007</td>
<td>16</td>
<td>-6.2082e+007</td>
<td></td>
<td>2254</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-5.8833e+007</td>
<td>48</td>
<td>-5.8811e+007</td>
<td></td>
<td>12548</td>
<td>42.64%</td>
</tr>
<tr>
<td>*</td>
<td>52</td>
<td>52</td>
<td>0</td>
<td>-4.1232e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>53</td>
<td>50</td>
<td>0</td>
<td>-5.1414e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>156</td>
<td>114</td>
<td>0</td>
<td>-5.3439e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>319</td>
<td>242</td>
<td>0</td>
<td>-5.3676e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>955</td>
<td>716</td>
<td>0</td>
<td>-5.3779e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>976</td>
<td>721</td>
<td>0</td>
<td>-5.3833e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>1166</td>
<td>858</td>
<td>0</td>
<td>-5.3863e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>1187</td>
<td>868</td>
<td>0</td>
<td>-5.3898e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>1748</td>
<td>1205</td>
<td>0</td>
<td>-5.4059e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2393</td>
<td>1601</td>
<td>0</td>
<td>-5.4088e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>2569</td>
<td>1395</td>
<td>0</td>
<td>-5.4422e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>12152</td>
<td>3545</td>
<td>0</td>
<td>-5.4559e+007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Implied bound cuts applied: 410
Flow cuts applied: 695
Flow path cuts applied: 117
Gomory fractional cuts applied: 14

Integer optimal solution: Objective = -5.4558535014e+007
Solution time = 2572.66 sec. Iterations = 2444566 Nodes = 16437
Model mod011.mps with probing

Reduced MIP has 1558 rows, 6895 columns, and 14668 nonzeros.

...
Probing added 286 nonzeros
Probing time = 0.31 sec.

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Cuts/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Node</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>33</td>
</tr>
<tr>
<td>*</td>
<td>51</td>
</tr>
<tr>
<td>*</td>
<td>78</td>
</tr>
</tbody>
</table>

Implied bound cuts applied: 2398
Flow cuts applied: 496
Flow path cuts applied: 207
Gomory fractional cuts applied: 3

Integer optimal solution: Objective = -5.4558535014e+007
Solution time = 206.73 sec. Iterations = 59222 Nodes = 110
Probing on a Wider Set of Models

- **Mean performance ratio:**
 - 1s: 0.68
 - 10s: 0.59
 - 100s: 0.34
 - 500s: 0.31
 - 1000s: 0.25
Another Example: Strong Branching
[Applegate, Bixby, Chvatal, and Cook, 1995]

- Use dual simplex to choose branching variable
 - Estimate objective degradation by performing a limited number of simplex iterations
 - Maximize the minimum degradation

- Finding optimal solutions for large Traveling Salesman Problems
 - Crucial for improving objective lower bound
Strong Branching on a Wider Set of Models

- Mean performance ratio:
 - 1s: 0.96
 - 10s: 0.76
 - 100s: 0.72
 - 500s: 0.66
 - 1000s: 0.69
Consistency Between User Goals and Code Goals
A MIP Code Has An (Implicit) Emphasis

- Emphasis before CPLEX 7.0:
 - Minimize time to proven optimality

- Important components of approach:
 - Aggressive cut generation
 - Search strategy that attempts to avoid unnecessary work
 - Depth First Search until first feasible found
 - Best Bound Search until termination
Potential Mismatch Between Goals

- **User reaction**
 - Depends heavily on user metric
 - Common metric:
 - Time to first “good” feasible solution

- **Reevaluate the bag of tricks**
 - Time to first feasible?
 - Time to 10% (20%?) gap?
Performance for Feasibility Emphasis

- **Mean performance improvement (CPLEX 7.5):**

<table>
<thead>
<tr>
<th>Desired optimality gap</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.01</td>
</tr>
<tr>
<td>10s</td>
<td>1.08</td>
<td>1.10</td>
<td>1.12</td>
<td>1.25</td>
</tr>
<tr>
<td>100s</td>
<td>1.17</td>
<td>1.26</td>
<td>1.31</td>
<td>1.51</td>
</tr>
<tr>
<td>500s</td>
<td>1.08</td>
<td>1.05</td>
<td>1.24</td>
<td>1.50</td>
</tr>
<tr>
<td>1000s</td>
<td>1.27</td>
<td>1.40</td>
<td>1.47</td>
<td>1.46</td>
</tr>
</tbody>
</table>
User Emphasis Setting: Feasibility Instead of Optimality

- Simple underlying algorithmic changes
 - Less aggressive application of cuts
 - More time spent near leaves of search tree

- Could be achieved with parameter changes

- Users pleased nonetheless
 - Describe goals rather than understanding and choosing techniques
User Emphasis Setting in 8.0

- Improvements reduce the importance of emphasis:
 - More heuristics produce feasible solutions faster and more consistently
 - Probed dives make dives more likely to lead to good feasible solutions
Performance for Feasibility Emphasis

- Mean performance improvement (Cplex 8.0):

<table>
<thead>
<tr>
<th>Desired optimality gap</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>Finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>1.03</td>
<td>1.02</td>
<td>1.02</td>
<td>1.01</td>
</tr>
<tr>
<td>10s</td>
<td>1.02</td>
<td>1.01</td>
<td>1.02</td>
<td>0.99</td>
</tr>
<tr>
<td>100s</td>
<td>1.16</td>
<td>1.14</td>
<td>1.13</td>
<td>1.04</td>
</tr>
<tr>
<td>500s</td>
<td>1.08</td>
<td>1.09</td>
<td>1.03</td>
<td>1.08</td>
</tr>
<tr>
<td>1000s</td>
<td>0.72</td>
<td>0.79</td>
<td>0.77</td>
<td>0.97</td>
</tr>
</tbody>
</table>
MIP Results of CPLEX8.0
[Bixby, Fenelon, Gu, Rothberg, Wunderling, 2002]

- Test set: 978 models
 Selected from our library with over 1500 models
- 100,000 seconds limit on ES40 Compaq Alpha
- Solved to optimality
 775 (77%)
- Among those not solved to optimality
 116 had gap less than 10% (11.9%)
 32 had no integral solution (3.2%)
- MIP emphasis feasibility on the 32 models
 25 found no feasible solution (2.6%)
Hard Problems

- **Natural progression:**
 1. Try default settings
 2. Specify an emphasis
 3. Change parameter settings
 4. Use priority order
 5. Reformulate model

- **Some models still unsolved after all these steps**
Exploiting User Knowledge
User Knowledge

- Users sometimes have domain knowledge that can help solution
 - Crucial variables
 - Heuristics for finding good feasible solutions
 - Strategies to decompose the problem through branching
 - Special cutting planes
 - Etc.

- User knowledge on the original model
 - MIP code solves the *presolved* model
Advanced Features

- **MIP callbacks**
 - Cut callback
 - Heuristic callback
 - Branch callback
 - Incumbent callback

- **Advanced presolve**
 - Allows user to express domain knowledge in terms of the original model
Adding User Cuts or Lazy Constraints

Before CPLEX 7.0
- Usually need to turn off presolve (lose 10.8X)
- All constraints must be explicit

Since CPLEX 7.0
- Can choose whether callbacks will work with original or presolved model
- Can obtain mappings for variables and constraints in the original model
- No need to specify all constraints up front
 - Lazy constraints
Caution: User Cuts

- **Original model**
 \[
 \text{max} \{x_1 + x_2 + 2x_3: 3x_1 + 3x_2 + 4x_3 \leq 6, x_1, x_2, x_3 \in \mathbb{B}\}
 \]

- **Presolved model**
 \[
 \text{max} \{y + 2x_3: 3y + 4x_3 \leq 6, 0 \leq y \leq 2, 0 \leq x_3 \leq 1, y, x_3 \in \mathbb{Z}\}
 \]

- **Cut for the original model**
 \[
 x_1 + x_3 \leq 1
 \]

 It cannot be transformed and added to the presolved model

- **Need to turn off non-linear reductions**, such as parallel column reduction
Caution: Lazy Constraints

- **Model**
 \[
 \text{max } \{x: 5x + 3y \leq 10, \ x - y \leq 0, \ x \geq 0, \ y \geq 0, \ x \in Z\}
 \]

- **x - y \leq 0 treated as a lazy constraint**
 - Presolve will fix y to 0 and x to 2
 - \(x - y \leq 0\) becomes \(2 - 0 \leq 0\)
 - Augmented model is infeasible?

- **Need to turn off dual reductions**
 - Reductions that depend on the objective function
Side Constraints
Side Constraints

- Many types of “side constraints”
 - SOS constraints
 - Semi-continuous variables
 - Cardinality constraints
 - Min, Max and Abs functions
 - Logical expressions
 - e.g., $x = 1$ implies $y+z \leq 3$
 - Tour requirements (TSP)
 - Etc.
Handling Side Constraints - Linearize

- **Example:** $\text{SOS1}(z_1,z_2)$
 - Introduce auxiliary binary variables b_1, b_2
 - $z_1 \leq u_1 \cdot b_1; \quad z_2 \leq u_2 \cdot b_2; \quad b_1 + b_2 \leq 1$

- **Pros:**
 - All MIP tricks apply (cuts, presolve, heuristics, etc.)
 - No need to handle special cases in MIP code

- **Cons:**
 - Model size increases
 - Often leads to large big-M coefficients
Handling Side Constraints - Branching

- **Example**: $\text{SOS1}(z_1, z_2)$
 - When both $z_1 > 0$ and $z_2 > 0$ at a node...
 - Branch on SOS1:
 - Left child: $z_1 = 0$
 - Right child: $z_2 = 0$

- **Cons**:
 - Special case for each construct
 - No presolve, cuts, heuristics, ...
 - Looser relaxation
Tighter Implicit Formulation?

- Is it possible to tighten relaxation without an explicit linearization?

- Specialized cuts or lazy constraints
 - E.g., cardinality constraints [de Farias and Nemhauser], TSP [Applegate, Bixby, Chvátal, and Cook]
 - Need to derive for each type of non-linear constraint

- Alternative: extension to Gomory cuts
Gomory Cut Review

- **Given** \(y, x_j \in \mathbb{Z}_+ \), and
 \[
y + \sum a_{ij} x_j = d = \lfloor d \rfloor + f, \; f > 0
 \]

- **Rounding:** Where \(a_{ij} = \lfloor a_{ij} \rfloor + f_j \), define
 \[
t = y + \sum (\lfloor a_{ij} \rfloor x_j : f_j \leq f) + \sum (\lceil a_{ij} \rceil x_j : f_j > f) \in \mathbb{Z}
 \]

- **Then**
 \[
 \sum (f_j x_j : f_j \leq f) + \sum (f_j-1)x_j : f_j > f) = d - t
 \]

- **Disjunction:**
 \[
t \leq \lfloor d \rfloor \implies \sum (f_j x_j : f_j \leq f) \geq f
 \]
 \[
t \geq \lceil d \rceil \implies \sum ((1-f_j)x_j : f_j > f) \geq 1-f
 \]

- **Combining:**
 \[
 \sum ((f_j/f)x_j : f_j \leq f) + \sum ([(1-f_j)/(1-f)]x_j : f_j > f) \geq 1
 \]
An Important Class: Disjunctive Constraints

- **Typical disjunctive set of constraints**

x must satisfy at least k of n sets of linear constraints, $S_i = \{x: A_i x \geq b_i\}$ for $i = 1, \ldots, n$

- **Modeling with binary variables**

 Dantzig (1957), Nemhauser and Wolsey (1988)

- **Side constraints in the class**

 - SOS constraints
 - Semi-continuous variables
 - Cardinality constraints
 - Min, Max and Abs functions
 - Logical linear expressions
Cardinality Constraint

- **Definition**

 At most m variables of x_1, \ldots, x_n can be positive

- **Use typical disjunctive set to express**

 \[S_i = \{x: -x_i \geq 0\} \text{ for } i = 1, \ldots, n \]

 \[k = n - m \]
Gomory Cut Extension (with Puget)

- **Given** \(x_j \in \mathbb{R}_+ \), and
- \(x \) is not in \(S_1, S_2, \ldots, S_m \), with \(m > n - k \)
 - Note \(x \) should be in at least \(k - (n - m) \) of the above sets

- **Pick a violated constraints from each set**
 \[\sum a_{ij} x_j \geq d_i, \ i = 1, \ldots, m \]

- **Substitute basic variables with nonbasic ones**
 \[\sum f_{ij} x_j \geq g_i, \ i = 1, \ldots, m \]
 - Note \(g_i > 0 \). Let \(h_{ij} = \max (0, f_{ij} / g_i) \), then
 \[\sum h_{ij} x_j \geq 1, \ i = 1, \ldots, m \]

- **Combine**
 \[\sum \sum h_{ij} x_j \geq m + k - n \]
One Size Fits All?

- Default works well to prove optimality or to find good feasible solutions for most models
 - Try it first
- CPLEX has an emphasis setting.
 - Using it to specify a goal may help for some models
- Several features are off by default
 - Turning them on or changing parameter settings can help solving hard models
- CPLEX provides advanced routines for exploiting user knowledge
 - They can be helpful for hard models, e.g. their use for extending Gomory cuts for handling side constraints