Concluding Thoughts

Tariq Samad
Honeywell Automation and Control Solutions
Minneapolis, MN, U.S.A.
tariq.samad@honeywell.com

IMA Workshop on “Data-Driven Control and Optimization,” Dec. 4-6, 2002
Three Great Things About the Twin Cities

• The weather’s bracing in early December

• Restaurants are pretty good (at any time of year)

• The Institute for Mathematics and its Applications
 – an international jewel

Thanks Scot, Doug, Fadil, Judie!
Successes of Data-Driven Methods

- Model-predictive control in the process industries
 - successful applications in 1970s, without theoretical underpinnings,
 - theory developed later
 - practitioners led the way, researchers followed

- The Matlab System Identification Toolbox
 - developed by Prof. Lennart Ljüng, 1980s
 - rigorous analytical framework, then a software package
 - widely adopted by industry

Basic theory usually the preserve of academia, new applications of industry, but the spark of innovation can arise anywhere
“I got an R^2 of 0.9324 on that data set you sent!”

• Too many criteria, and they’re application dependent
 – prediction accuracy on new data
 – false positive vs false negative errors (and function approximation analogs)
 – model complexity (usually, but not always, lack thereof)
 – understandable by users
 – cost of model development
 – cost of model maintenance

• No technique can be expected to be globally superior
• No theory can be expected to be this comprehensive
Problem Characteristics

- Skill level of human user
 - e.g., they don’t teach reproducing kernel Hilbert spaces in high school—or medical school
- Problem dimensionality and sample size
 - DNA microarrays versus power grids versus batch reactors
- Regulatory requirements
 - FDA, FAA, EPA, FERC, …
- Cost of upgrading system
- Response time requirements
- Stationarity of system
- Accuracy requirements

What improvement in accuracy will overcome need to train users, obtain regulatory approval, upgrade equipment?
Application Domains

- Intelligence and security
- Power systems
- Process industries
- Veterinary treatment
- Genomics
- Systems biology
- District heating networks
- Financial markets
- Probabilistic mapping
- Chronic relapsing disorders
- Supply chain management
Domain Knowledge

• It would be nice if “data-driven” implied “domain knowledge not needed” …

• … but real and practically important domains have particular characteristics
 – power systems and markets
 – microarray data mining
 – batch bioreactor

• Must every researcher become an expert in some complex domain?

Theory can be developed in isolation, but deriving real-world benefit requires multidisciplinary/multifunctional collaboration
The Long-Term View

- First “artificial neural network” model: McCullough and Pitts, 1940s
- The first wave of hype: Rosenblatt Perceptron, early 1960s
- From oversell to overkill: Minsky and Paper, mid-1960s
- The new wave begins: Hopfield, McLelland & Rumelhart, …: early 1980s
- Second wave of hype…
- Control and statistics communities get involved
 - heuristics lead to rigor
- Successful practical applications
- Current status: Not a revolutionary technology, but a useful tool in the data analyst’s toolbox

Number of papers with “neural networks” or synonyms in titled presented at the American Control Conferences, 1986-1995
Where’s the Data?

- Data repositories in existence, widely used by research community
- Need industrial-strength data sets
 - real problems, sanitized data
 - substantial potential benefit to contributing organization—only they can exploit “better” modeling approaches for the sanitized problem
 - possible role for academic centers, consortia, or not-for-profit institutions (e.g., EPRI)
There are models, and then there are models

• We lack standard formulations for data-driven modeling

• Separate formulation from method

• Facilitate comparisons, evaluation, and application
• $y = f(x; \theta)$ is just one kind of data-driven model …

• Influence diagrams and limited memory influence diagrams (LIMIDs)
 – modeling workflow, and associated information flow
 – efficiently maximizing utility in multistage decision procedure
 – what information should be taken into account in making a decision?
 – cooperative decision making
 – close connection to heuristic dynamic programming and related methods, but explicit multi-stage decision-making perspective is illuminating
• Systems biology models
 – action and interaction of cells within the organism
 – action and interaction of genes within cell
 – integrating description levels
 – ontologies
 – models being developed manually, but data is becoming available
Dynamic dynamical systems

- dynamical systems that undergo structural changes—components and connectivity
- .NET, critical infrastructures, autonomic computing, C4ISR
- How do we realize just-in-time plug and play architectures?
- How do we design control strategies?
Data-Driven Control and Optimization

- Model-predictive control
- System optimization
- Route planning
- Cautious switching control
- Optimized multistage decision making
- “Gaming” the system
- System security

Stochastic and probabilistic aspects are central to data-driven control and optimization
Responses to the Curse of Dimensionality

- Regularization and model complexity measures
- Dow’s stacked analytic neural nets
- Pruned information flow
- Suboptimal distributed optimization
- Offline/online partitioning of computation
- Parametric approximation, information geometry, relevance-based weighting, exploiting correlation structure

- The same approximation may facilitate the solution of one problem and render the solution of another, seemingly similar one, intractable
The Workshop, the Book, ... the Movie?

• Workshop is unique in some ways
 – theory and practice
 – broad view of data-centricity
 – multiple application areas

• Published proceedings may be a useful resource for multiple communities
 – Springer-Verlag bound volume
 – broaden title to “Data-Centric Modeling, Control, and Optimization”?

• Organizers will solicit additional chapters
 – suggestions for invitees welcome

• Suggested timeline
 – invitations to additional desired contributors: 31 December 2002
 – preliminary table of contents, 31 January 2003
 – chapters due 30 April 2003 (send to IMA)
 – material to Springer: 1 June 2003
 – book out: 1 August 2003

• IMA will provide LaTeX macros, do final typesetting
 – suggested length: 12-20 pages in IMA format