Efficient implementation of interior-point methods for SDPs arising in control and signal processing

Lieven Vandenberghe
UCLA Electrical Engineering Department

joint work with:
Ragu Balakrishnan (Purdue University)
Anders Hansson, Ragnar Wallin (Linköping University)

IMA Workshop on SDP and Robust Optimization 3/13/03
Outline

- SDPs derived from the Kalman-Yakubovich-Popov (KYP) lemma
- primal-dual interior-point methods
- fast implementation for KYP-SDPs and numerical examples
SDPs derived from the KYP lemma

minimize \(c^T x + \sum_{k=1}^{N} \text{Tr}(C_k P_k) \)

subject to \[
\begin{bmatrix}
A_k^T P_k + P_k A_k & P_k B_k \\
B_k^T P_k & 0
\end{bmatrix} + \sum_{i=1}^{p} x_i M_{ki} \succeq N_k, \quad k = 1, \ldots, N
\]

- variables: \(x \in \mathbb{R}^p, P_k \in \mathbb{S}^{n_k}, k = 1, \ldots, N \)
- \(c \in \mathbb{R}^p, C_k \in \mathbb{S}^{n_k}, A_k \in \mathbb{R}^{n_k \times n_k}, B_k \in \mathbb{R}^{n_k \times m_k}, M_{ki}, N_k \in \mathbb{S}^{n_k + m_k} \)
- \(N \) LMIs of dimension \(n_k + m_k \)
Kalman-Yakubovich-Popov lemma

if \((A, B)\) is controllable, then the following conditions are equivalent:

1. the KYP-LMI

\[
\begin{bmatrix}
AP + PA & PB \\
B^T P & 0
\end{bmatrix} + \sum_{i=1}^{p} x_i M_i - N \succeq 0
\]

is feasible (an LMI with variables \(P, x\))

2. the frequency-domain inequality

\[
\begin{bmatrix}
(j\omega I - A)^{-1}B \\
I
\end{bmatrix}^* \left(\sum_{i=1}^{p} x_i M_i - N \right) \begin{bmatrix}
(j\omega I - A)^{-1}B \\
I
\end{bmatrix} \succeq 0 \quad \forall \omega \in \mathbb{R}
\]

is feasible, where \(j = \sqrt{-1}\) (an infinite number of LMIs in \(x\))
minimize \(c^T x + \sum_{k=1}^{N} \text{Tr}(C_k P_k) \)

subject to
\[
\begin{bmatrix}
A_k^T P_k + P_k A_k & P_k B_k \\
B_k^T P_k & 0
\end{bmatrix} + \sum_{i=1}^{P} x_i M_{ki} \succeq N_k, \quad k = 1, \ldots, N
\]

- a useful class of SDPs, widely encountered in control
- \(x \) is usually the optimization variable of interest; variables \(P_k \) are auxiliary variables, introduced to convert semi-infinite frequency-domain inequalities into LMIs
- large number of variables (several 1000 or 10,000) for moderate values of \(n_k \)
Algorithms for KYP-SDPs

- general-purpose SDP solvers: slow due to large number of variables
- cutting-plane algorithms (Kao and Megretski, Parrilo)
- fast implementation of standard IPMs using conjugate gradients (Hansson)
- this talk: fast implementation of standard IPMs using direct linear algebra
Special case: Riccati inequality

maximize $\text{Tr } P$
subject to $\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} \preceq \begin{bmatrix} -Q & 0 \\ 0 & -I \end{bmatrix}$

($Q > 0$)

- a KYP-SDP with $p = 0$ (no variable x), $N = 1$ (one constraint)
- cost of solving: $O(n^3)$, via Schur decomposition of Hamiltonian matrix

$$H = \begin{bmatrix} A & -B B^T \\ -Q & -A^T \end{bmatrix}$$
Properties of Hamiltonian matrix

\[H = \begin{bmatrix} A & -BB^T \\ -Q & -A^T \end{bmatrix} \]

- eigenvalues are symmetric about the imaginary axis; no eigenvalues on the imaginary axis
- if \((V_1, V_2)\) spans the stable invariant subspace, \(i.e.,\)

\[
\begin{bmatrix} A & -BB^T \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \bar{A}
\]

with \(\bar{A}\) stable, then:
- \(V_1\) is nonsingular; \(V_2^T V_1 = V_1^T V_2\)
- \(P_{\text{opt}} = V_2 V_1^{-1}\) is the optimal solution of the SDP
proof: use congruence \(T = \begin{bmatrix} V_1 & 0 \\ -B^T V_2 & I \end{bmatrix} \) to transform SDP

\[
\begin{align*}
\text{maximize} & \quad \mathbf{Tr} \ P \\
\text{subject to} & \quad T^T \begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} T \preceq T^T \begin{bmatrix} -Q & 0 \\ 0 & -I \end{bmatrix} T
\end{align*}
\]

simplifications (using definition of \(V_1, V_2 \)):

\[
T^T \begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} T = \begin{bmatrix} \bar{A}^T \bar{P} + \bar{P} \bar{A} & \bar{P} \bar{B} \\ \bar{B}^T \bar{P} & 0 \end{bmatrix}
\]

\[
T^T \begin{bmatrix} -Q & 0 \\ 0 & -I \end{bmatrix} T = \begin{bmatrix} \bar{A}^T P_0 + P_0 \bar{A} & P_0 \bar{B} \\ \bar{B}^T P_0 & -I \end{bmatrix}
\]

where \(\bar{P} = V_1^T PV_1, \ P_0 = V_1^T V_2, \ \bar{B} = V_1^{-1} B \)
optimality conditions of SDP after congruence transformation:

1. primal feasibility: \(S \succeq 0 \),
\[
- \begin{bmatrix}
 S_{11} & S_{12} \\
 S_{12}^T & S_{22}
\end{bmatrix} + \begin{bmatrix}
 \bar{A}^T \bar{P} + \bar{P} \bar{A} & \bar{P} \bar{B} \\
 \bar{B}^T \bar{P} & 0
\end{bmatrix} = \begin{bmatrix}
 \bar{A}^T P_0 + P_0 \bar{A} & P_0 \bar{B} \\
 \bar{B}^T P_0 & -I
\end{bmatrix}
\]

2. dual feasibility: \(Z \succeq 0 \), \(\bar{A} Z_{11} + Z_{11} \bar{A}^T + \bar{B} Z_{12}^T + Z_{12} \bar{B}^T + V_1 V_1^T = 0 \)

3. complementary slackness: \(\text{Tr}(S Z) = 0 \)

solution

\(\bar{P} = P_0 \), \(S = \begin{bmatrix}
 0 & 0 \\
 0 & I
\end{bmatrix} \), \(Z = \begin{bmatrix}
 Z_{11} & 0 \\
 0 & 0
\end{bmatrix} \)

where \(\bar{A} Z_{11} + Z_{11} \bar{A}^T + V_1 V_1^T = 0 \)
SDP duality

primal SDP

minimize $\langle c, y \rangle$
subject to $A(y) + S = B$, $S \succeq 0$

• $A : \mathcal{V} \to \mathbb{S}^m$ is a linear mapping; $\langle c, y \rangle$ is inner product on \mathcal{V}
• variable $x \in \mathcal{V}$, $S \in \mathbb{S}^m$

dual SDP

maximize $- \text{Tr}(BZ)$
subject to $A^*(Z) + c = 0$, $Z \succeq 0$

• $A^* : \mathbb{S}^m \to \mathcal{V}$ is adjoint of A
• variable $Z \in \mathbb{S}^m$
Primal-dual path-following algorithm

(Tütüncü, Toh, Todd)

starting point: \(S \succ 0, Z \succ 0, \) any \(y \)
repeat:
1. Verify stopping criteria.
2. Compute the Nesterov-Todd scaling matrix \(R: R \) is defined by

\[
R^T S^{-1} R = \text{diag}(\lambda)^{-1}, \quad R^T Z R = \text{diag}(\lambda), \quad \lambda \in \mathbb{R}^m_{++}
\]

3. Compute affine scaling directions:

\[
\mathcal{H}(\Delta Z^a S + Z \Delta S^a) = -\text{diag}(\lambda)^2
\]
\[
\Delta S^a + A(\Delta y^a) = -(A(y) + S - B)
\]
\[
A^*(\Delta Z^a) = -(A^*(Z) + c)
\]

where \(\mathcal{H}(X) = \frac{1}{2}(R^T X R^{-T} + R^{-1} X^T R) \)
4. **Compute centering-corrector steps:**

\[
\mathcal{H}(\Delta Z^c S + Z \Delta S^c) = \rho I - \mathcal{H}(\Delta Z^a \Delta S^a) \\
\Delta S^c + \mathcal{A}(\Delta y^c) = 0 \\
\mathcal{A}^*(\Delta Z^c) = 0
\]

with \(\rho \) calculated based on \(\text{Tr}(S^2) \), \(\Delta Z^a \), \(\Delta S^a \)

5. **Update primal and dual iterates:**

\[
y := y + \alpha \Delta y, \quad S := S + \alpha \Delta S, \quad Z := Z + \beta \Delta Z
\]

where \(\Delta y = \Delta y^a + \Delta y^c \), \(\Delta S = \Delta S^a + \Delta S^c \), \(\Delta Z = \Delta Z^a + \Delta Z^c \), and

\[
\alpha = \min\{1, 0.99 \sup\{\alpha \mid S + \alpha \Delta S \succeq 0\}\} \\
\beta = \min\{1, 0.99 \sup\{\beta \mid Z + \beta \Delta Z \succeq 0\}\}
\]
Overall complexity

• number of iterations is low (< 30), almost independent of problem size

• at each iteration, solve two sets of linear equations

\[\mathcal{H}(\Delta ZS + Z\Delta S) = D_1 \]
\[\Delta S + A(\Delta y) = D_2 \]
\[A^*(\Delta Z) = d \]

where

\[\mathcal{H}(X) = \frac{1}{2}(R^T X R^{-T} + R^{-1} X^T R) \]

values of \(R \) (NT scaling matrix), \(D_1, D_2, d \) change at each iteration

• search equations for other types of primal-dual methods are similar
General-purpose implementation

solve search equations as follows:

• eliminate ΔS:

$$-W \Delta Z W + \mathcal{A}(\Delta y) = D$$
$$\mathcal{A}^*(\Delta Z) = d$$

where $W = RR^T$

• eliminate ΔZ:

$$\mathcal{A}^*(W^{-1} \mathcal{A}(\Delta y)W^{-1}) = d + \mathcal{A}^*(W^{-1}DW^{-1}) \quad (1)$$

a (usually dense) positive definite set of linear equations of Δy

overall cost: cost of forming coefficient matrix of (1) plus cost of solving
Search equation for KYP-SDPs

for simplicity, consider KYP-SDP with $N = 1, m_1 = 1$:

\[
\begin{align*}
\text{minimize} & \quad c^T x + \text{Tr}(CP) \\
\text{subject to} & \quad K(P) + M(x) \succeq N
\end{align*}
\]

where

\[
K(P) = \begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix}, \quad M(x) = \sum_{i=1}^{p} x_i M_i
\]

- $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$
- (A, B) controllable; without loss of generality, can assume A is stable
- $p + n(n + 1)/2$ variables
search equations

\[W \Delta Z W + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D_1 \]
\[\mathcal{K}^*(\Delta Z) = D_2 \]
\[\mathcal{M}^*(\Delta Z) = d \]

- \(W > 0 \); values of \(W, D_1, D_2, d \) change at each iteration

- \(\mathcal{K}^*, \mathcal{M}^* \) are adjoint mappings of \(\mathcal{K}, \mathcal{M} \):

\[\mathcal{M}^*(\Delta Z) = (\text{Tr}(M_1 \Delta Z), \ldots, \text{Tr}(M_p \Delta Z)) \]
\[\mathcal{K}^*(\Delta Z) = A \Delta Z_{11} + \Delta Z_{11} A^T + B \Delta \tilde{z}^T + \Delta \tilde{z} B^T \]

where

\[\Delta Z = \begin{bmatrix} \Delta Z_{11} & \Delta \tilde{z} \\ \Delta \tilde{z}^T & 2 \Delta z_{n+1} \end{bmatrix} \]
Standard method of solving the search equations

\[W \Delta Z W + \mathcal{K}(\Delta P) + \mathcal{M}(\Delta x) = D_1 \]
\[\mathcal{K}^*(\Delta Z) = D_2 \]
\[\mathcal{M}^*(\Delta Z) = d \]

general-purpose solvers eliminate \(\Delta Z \) from first equation:

\[\mathcal{K}^*(W^{-1}(\mathcal{K}(\Delta P) + \mathcal{M}(\Delta x))W^{-1}) = \mathcal{K}^*(W^{-1}D_1W^{-1}) - D_2 \]
\[\mathcal{M}^*(W^{-1}(\mathcal{K}(\Delta P) + \mathcal{M}(\Delta x))W^{-1}) = \mathcal{M}^*(W^{-1}D_1W^{-1}) - d \]

a dense set of linear equations in \(\Delta P, \Delta x \)

cost: at least \(O(n^6) \)
Alternative method

step 1: express (1,1)-block of dual variable

\[
\Delta Z = \begin{bmatrix}
\Delta Z_{11} & \Delta \tilde{z} \\
\Delta \tilde{z}^T & 2\Delta \tilde{z}_{n+1}
\end{bmatrix}
\]

in terms of last column \(\Delta z = (\Delta \tilde{z}, \Delta \tilde{z}_{n+1}) \in \mathbb{R}^{n+1}\), using 2nd equation

\[
\mathcal{K}^*(\Delta Z) = A\Delta Z_{11} + \Delta Z_{11}A^T + B\Delta \tilde{z}^T + \Delta \tilde{z}B^T = D_2
\]

this gives

\[
\Delta Z_{11} = \sum_{i=1}^{n} \Delta \tilde{z}_i X_i - X_0
\]

where \(X_0, \ldots, X_n\) are defined by

\[
AX_0 + X_0A^T + D_2 = 0, \quad AX_i + X_iA^T + Be_i^T + e_iB^T = 0, \quad i = 1, \ldots, n
\]
in other words,

\[K^*(\Delta Z) = D_2 \iff \Delta Z = B(\Delta z) - Z_0, \]

where

\[B(\Delta z) = \begin{bmatrix} \sum_{i=1}^{n} \Delta z_i X_i & \Delta \tilde{z} \\ \Delta \tilde{z}^T & 2\Delta z_{n+1} \end{bmatrix}, \quad Z_0 = \begin{bmatrix} X_0 & 0 \\ 0 & 0 \end{bmatrix} \]

substituting in search equations gives

\[WB(\Delta z)W + K(\Delta P) + M(\Delta x) = D_1 + WZ_0W \]
\[M^*(B(\Delta z)) = d \]

variables \(\Delta z \in \mathbb{R}^{n+1}, \Delta P \in \mathbb{S}^n, \Delta x \in \mathbb{R}^p \)
step 2: eliminate ΔP from

$$WB(\Delta z)W + K(\Delta P) + M(\Delta x) = D_1 + WZ_0W$$

$$M^*(B(\Delta z)) = d$$

by noting that

$$S = K(\Delta P) \text{ for some } \Delta P \iff B^*(S) = 0$$

reduced equations:

$$B^*(WB(\Delta z)W) + B^*(M(\Delta x)) = B^*(D_1 + WZ_0W)$$

$$M^*(B(\Delta z)) = d$$

a set of $n + p + 1$ linear equations in $n + p + 1$ variables $\Delta z, \Delta x$
summary: reduced search equations

\[
\begin{bmatrix}
P_{11} & P_{12} \\
P^T_{12} & 0
\end{bmatrix}
\begin{bmatrix}
\Delta z \\
\Delta x
\end{bmatrix}
=
\begin{bmatrix}
q_1 \\
q_2
\end{bmatrix}
\]

- cost of solving is \(O(n^3)\) operations (if we assume \(p = O(n)\))

- from \(\Delta z, \Delta x\), can find \(\Delta Z, \Delta P\) in \(O(n^3)\) operations

- \(P_{12}\) is independent of current iterates (\(W\)) and can be pre-computed

total cost: \(O(n^3)\) plus the cost of constructing \(P_{11}\)
Constructing the reduced equations

\[P_{11} = \begin{bmatrix} H & 0 \\ 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} W_{11} \\ W_{21} \end{bmatrix} \begin{bmatrix} G & 0 \end{bmatrix} + 2 \begin{bmatrix} G^T \\ 0 \end{bmatrix} \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} + 2W_{22}W + 2 \begin{bmatrix} W_{12} \\ W_{22} \end{bmatrix} \begin{bmatrix} W_{21} & W_{22} \end{bmatrix} \]

where

\[H_{ij} = \text{Tr}(X_iW_{11}X_jW_{11}), \quad G = \begin{bmatrix} X_1W_{12} & X_2W_{12} & \cdots & X_nW_{12} \end{bmatrix} \]

and \(W \) is partitioned as \(W = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} \), \(W_{11} \in \mathbf{S}^n \)

cost dominated by \(O(n^4) \) to precompute \(X_i \)'s; \(O(n^4) \) to form \(H \)
Numerical example

<table>
<thead>
<tr>
<th>$n = p$</th>
<th>KYP IPM</th>
<th>SeDuMi (primal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prep. time</td>
<td>time/iter.</td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>0.07</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>21.7</td>
<td>3.3</td>
</tr>
<tr>
<td>200</td>
<td>438.3</td>
<td>31.6</td>
</tr>
</tbody>
</table>

- CPU time in seconds on 2.4GHz PIV with 1GB of memory
- KYP-IPM: Matlab implementation of path-following method, using reduced search equations
- SeDuMi (primal): SeDuMi version 1.05 applied to primal problem
- prep. time is time to compute matrices X_i
- #iterations in both methods is comparable (7–15)
Reformulation of dual problem

primal SDP

\[
\begin{align*}
\text{minimize} & \quad c^T x + \text{Tr}(CP) \\
\text{subject to} & \quad \begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^p x_i M_i \succeq N
\end{align*}
\]

dual SDP

\[
\begin{align*}
\text{maximize} & \quad -\text{Tr}(NZ) \\
\text{subject to} & \quad AZ_{11} + Z_{11} A^T + \tilde{z} B^T + B \tilde{z}^T = N \\
& \quad \begin{bmatrix} Z_{11} & \tilde{z} \\ \tilde{z}^T & 2 \tilde{z}_{n+1} \end{bmatrix} \succeq 0
\end{align*}
\]

can eliminate Z_{11}: $Z_{11} = -Z_0 + \sum_{i=1}^n z_i X_i$ where

\[
AZ_0 + Z_0 A^T + N = 0, \quad AX_i + X_i A^T + B e_i^T + e_i B^T = 0, \quad i = 1, \ldots, n
\]

results in an SDP with $n + 1$ variables, and an LMI of size $n + 1$
numerical example

<table>
<thead>
<tr>
<th>$n = p$</th>
<th>KYP IPM</th>
<th>SeDuMi (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prep. time</td>
<td>time/iter</td>
</tr>
<tr>
<td>25</td>
<td>0.1</td>
<td>0.07</td>
</tr>
<tr>
<td>50</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>100</td>
<td>21.7</td>
<td>3.3</td>
</tr>
<tr>
<td>200</td>
<td>438.3</td>
<td>31.6</td>
</tr>
</tbody>
</table>

- solution times are comparable
- preprocessing in both methods: computation of matrices X_i
- in fact both methods are equivalent: search equations for modified dual problem are equal to reduced search equations for primal problem
Fast construction of reduced system

use factorization of A to compute

$$H_{ij} = \text{Tr}(X_i W_{11} X_j W_{11}), \quad i, j = 1, \ldots, n$$

without computing X_i, i.e., without explicitly solving

$$AX_i + X_i A^T + B e_i^T + e_i B^T = 0, \quad i = 1, \ldots, n$$

• advantages: no need to store matrices X_i, faster construction of reduced search equations

• possible factorizations: eigenvalue decomposition, companion form, . . .
example: suppose A has distinct eigenvalues

$$A = V \text{diag}(\lambda)V^{-1}$$

closed-form expression for H:

$$H = 2\text{Re} \left(V^{-T}(C \odot C^T)V^{-1} + V^{-*}(D \odot E^T)V^{-1} \right)$$

where \odot is Hadamard product and

$$C = \Sigma \text{diag}(V^{-1}B)*V*W_{11}V$$
$$D = V*W_{11}V$$
$$E = \Sigma \text{diag}(V^{-1}B)*V*W_{11}V \text{ diag}(V^{-1}B)\Sigma$$
$$\Sigma_{ij} = 1/(\lambda_i + \lambda_j^*), \quad i, j = 1, \ldots, n$$

allows us to construct H in $O(n^3)$ operations
existence of distinct stable eigenvalues

- by assumption, \((A, B)\) is controllable; hence can arbitrarily assign eigenvalues of \(A + BK\) by choosing \(K\)

- choose \(T = \begin{bmatrix} I & 0 \\ K & I \end{bmatrix}\), and replace LMI by equivalent LMI

\[
TT \left(\begin{bmatrix} A^T P + PA & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^{N} x_i M_i \right) T \succeq T^T N T
\]

\[
\begin{bmatrix} (A + BK)^T P + P(A + BK) & PB \\ B^T P & 0 \end{bmatrix} + \sum_{i=1}^{N} x_i (T^T M_i T) \succeq T^T N T
\]

conclusion: can assume without loss of generality that \(A\) is stable with distinct eigenvalues
Numerical example

five randomly generated problems with $p = 50$, $n = 100, \ldots, 500$

<table>
<thead>
<tr>
<th>n</th>
<th>KYP IPM</th>
<th>SeDuMi (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>prep. time</td>
<td>time/iter</td>
</tr>
<tr>
<td>100</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>200</td>
<td>10.1</td>
<td>8.9</td>
</tr>
<tr>
<td>300</td>
<td>32.4</td>
<td>27.3</td>
</tr>
<tr>
<td>400</td>
<td>72.2</td>
<td>62.0</td>
</tr>
<tr>
<td>500</td>
<td>140.4</td>
<td>119.4</td>
</tr>
</tbody>
</table>

• KYP-IPM is same algorithm as before, but uses eigenvalue decomposition of A to construct reduced search equations

• preprocessing time and time/iteration grow as $O(n^3)$
Conclusions

SDPs derived from the KYP-lemma

- a useful class of SDPs, widely encountered in control
- difficult to solve using general-purpose software

Fast solution using interior-point methods

- reformulate dual SDP and solve using general-purpose solver (cost roughly $O(n^4)$)
- custom implementation based on fast solution of search equations (cost $O(n^4)$ or $O(n^3)$)