Adapting to nonstationary behavior
Examples from geophysics and cosmology

Luis Tenorio. Colorado School of Mines
Objectives

- Improve modeling → reduce bias

- Adapt to nonstationary behavior

- More flexible to constraints

Main tool: Gaussian mixtures
Examples

• Reflection seismology: Earth’s reflectivity

\[\text{signal} = \text{flat} + \text{bursts} \]

• Cosmology: sources in far-IR sky maps

\[\text{map} = \text{background} + \text{local sources} \]
Gaussian Mixtures

• Sample randomly from Gaussians

• \(F(x) = \alpha_1 F_1(x) + \cdots + \alpha_k F_k(x), \ \sum \alpha = 1 \)

• Flexible modeling, accessible inference
Convolutional Model

- \(s_t = \sum_k w_k r_{t-k} + z_t = w_t * r_t + z_t \)

\(s_t \) Seismic trace —data

\(w_t \) Seismic pulse —unknown

\(r_t \) Reflectivity —unknown

\(z_t \) Noise
Objective

- Estimate \(r_t \) (deconvolve)

- Deconvolution filter \(g_t \) \((g_0 = 1)\)

\[
g_t * s_t = s_t + \sum_{k=1}^{p} g_k s_{t-k} \approx r_t
\]
Wiener-Levinson

- Yule-Walker equations

\[
\begin{pmatrix}
1 & \hat{\rho}(1) & \cdots & \hat{\rho}(p-1) \\
\hat{\rho}(1) & 1 & \cdots & \hat{\rho}(p-2) \\
\vdots & \vdots & \ddots & \vdots \\
\hat{\rho}(p-1) & \hat{\rho}(p-2) & \cdots & 1
\end{pmatrix}
\begin{pmatrix}
\hat{\rho}(1) \\
\hat{\rho}(2) \\
\vdots \\
\hat{\rho}(p)
\end{pmatrix}
= g
\]

- Durbin-Levinson algorithm
Why not Wiener-Levinson?

- Yule-Walker equations \rightarrow WL filter g_t

- Simple \rightarrow widely used

- Reasonably robust?

 Weaken assumptions \rightarrow more adaptable
WL Assumptions

- r_t white (Gaussian)

- w_t invertible

- s_t noiseless
In Practice

- \(r_t \) not stationary
- \(r_t \) not Gaussian
- \(w_t \) not invertible
- Correlated noise
Robustify WL

- Better adapt to nonstationarities

- Model non-Gaussian predictions

- Natural generalization of WL
If r_t is white

$$g_t \ast s_t = s_t + \sum_{k=1}^{p} g_k s_{t-k} = r_t$$

$$\hat{s}_t = E(s_t | S^{t-1}) = - \sum_{k=1}^{p} g_k s_{t-k}$$

$$r_t = s_t - \hat{s}_t$$

Filter $= (1, g_1, \ldots, g_p)$
Generalize

\[
WL : \quad F(s_t \mid S^{t-1}) = N \left(- \sum_{i=1}^{p} g_is_{t-i}, \sigma^2 \right)
\]

Generalize : \quad F(s_t \mid S^{t-1}) = \alpha_0 N \left(- \sum_{i=1}^{p} g_is_{t-i}, \sigma_0^2 \right) + \alpha_1 N \left(\phi_1 s_{t-1}, \sigma_1^2 \right) + \cdots + \alpha_q N \left(\phi_q s_{t-q}, \sigma_q^2 \right)
Mixture Transition Distributions (MTD) filter:

\[\hat{s}_t = E(s_t \mid S^{t-1}) = - \sum_{i=1}^{p} (\alpha_0 g_i - \alpha_i \phi_i) s_{t-i} \]

\[r_t = s_t - \hat{s}_t \]

Filter = \(1, \alpha_0 g_1 + \alpha_1 \phi_1, \ldots, \alpha_0 g_p + \alpha_p \phi_p\)

\[\alpha_0 = 1 \Rightarrow WL \]
MTD Deconvolution

- $p =$ filter length

 \[q + 1 = \# \text{ mixture components} \]

- ϕ’s: $\rho_{k,j} =$ k-lag correlation from j-component

 $g_k =$ WL filter from 1st component

 \[\Rightarrow \text{ filter } \approx (1, \alpha_0 g_1 - \alpha_1 \rho_{1,1}, \ldots, \alpha_0 g_p - \alpha_p \rho_{p,p}) \]

- EM algorithm
Approximation

• g_k from WL

• $\rho_{k,j} \approx \rho_k$

• $q \ll p$

• WL plus smaller optimization
Plots

• Dynamic range reduction of $g_t \ast w_t$

• Reduction in phase rms error $(g_t \text{ vs } w_t^{-1})$
Dynamic range reduction (%) vs. s/n ratio.

Amplitude

s/n

Dynamic range reduction (%)
II. Cosmology

- Cosmological models \rightarrow random fields

- Random fields: homogeneous (or isotropic)

 \[E R(r) = \mu, \quad E R(r_1) R(r_2) = \gamma(\cos \theta_{12}) \]

- Not always Gaussian
Questions:

Generate random field(s):

1. Homogeneous
 Non-Gaussian
 Prescribed marginal
 Prescribed correlation function
2. Homogeneous

Non-Gaussian

Prescribed correlation function

Prescribed three-point correlation function
3. Multidimensional homogeneous
Non-Gaussian

Prescribed marginals

Prescribed cross-correlation functions

[with R. Vio, W. Wamsteker (ESA)
& P. Andreani (MP Garching)]
Multidimensional homogeneous fields

- $\mathbf{R}(\mathbf{r}) = (R_1(\mathbf{r}), ..., R_n(\mathbf{r}))$

- $R_i = \text{different frequency backgrounds}$

- $R_1 = \text{radiation background, } R_2 = \text{source field}$
Homogeneity

- Mean vector \(\mu_i = \mathbb{E} R_i(\mathbf{r}) \rightarrow \mu_R \)

- Cross-correlation matrix
 \[
 \rho_{ij}(\cos \theta) = \text{Cov} \left(R_i(\mathbf{r}_1), R_j(\mathbf{r}_2) \right) \rightarrow \rho_R(\theta)
 \]

- Spectral representation: \(A_{\ell,m} \) uncorrelated
 \[
 R(\mathbf{r}) = \sum_{\ell, m} A_{\ell,m} Y_{\ell,m}(\mathbf{r}),
 \]
 \[
 \mathbb{E} \left[A_{\ell,m} A_{\ell,m}^* \right] = S_\ell
 \]
Defining Gaussian $G(r)$

- Just define

 Mean vector μ_G

 Cross-correlation matrix $\rho_G(\theta)$

- Use spectral representation
Defining non-Gaussian $\mathbf{R}(\mathbf{r})$

- Much harder

 Marginal distributions F_i

 Mean vector $\mathbf{\mu}_\mathbf{R}$

 Cross-correlation matrix $\mathbf{\rho}_\mathbf{R}(\theta)$

- Start with Gaussian
Transforming Gaussian fields

- $\mathbf{G}(\mathbf{r})$ homogeneous Gaussian

 \[\mathbf{R}(\mathbf{r}) = T(\mathbf{G}(\mathbf{r})) \text{ homogeneous} \]

- Marginals define T:

 \[T_i = F_i^{-1} \circ \Phi \]

- Find $\boldsymbol{\rho}_\mathbf{G}$ that maps to $\boldsymbol{\rho}_\mathbf{R}$

 \[\rho_{R_i,R_j}(\theta) = H_{ij} \left(\rho_{G_i,G_j}(\theta) \right) \]
Properties of $H(\rho)$

- $H(0) = 0$

- Continuous and monotonically increasing on $[-1, 1]$

- Smooth on $(-1, 1)$

- Range $\subset [-1, 1]$
\[\rho_{R_{ii}} \]
Recipe for Gaussian $G(r)$

- Invert for ρ_G

- Determine the cross-spectra Σ_ℓ from ρ_G.

- Generate Gaussian A_ℓ characterized by Σ_ℓ

- Transform back
Example

• $T_1 = \text{Far-IR from ISO (Gaussian)}$

• $T_2 = \text{Source field (Gaussian mixture)}$

$$\rho(\tau) = \begin{pmatrix} \rho_0(\tau) & \alpha \rho_0(\tau) \\ \alpha \rho_0(\tau) & B(\tau) \end{pmatrix}$$

ρ_0 from cosmology, B instrument’s smoothing
Summary

- Mixtures to adapt to nonstationarities

 ➤ Computational and physical issues

 ➤ Modeling uncertainties