Network Measurements and Sampling

Nick Duffield, Carsten Lund, and Mikkel Thorup

AT&T Labs-Research, Florham Park, NJ
IP Network

The Edge of Network

Links

Routers
Some Questions that are hard to answer about IP networks

- Given a hotspot, how do we change network configuration to fix the problem.
 - What exactly is the problem? Type of traffic?
- Traffic usage. Which applications are using the network?
- How do we design an efficient network?
 - Where do the traffic want to go?
Traffic Matrix Construction

- **Traffic Matrix**
 - Point to Point Demands
 - Point to Multi-Point Demands
 - Needed to model in networks with multi-homing and peering. (e.g., ISPs etc.)

- **Input for many tasks**
 - Network Design
 - Reroute traffic
 - Failure analysis
 - OSFP weight optimization (Thorup et al.)
Measurement Options

- SNMP
 - Counting packets on interfaces
- Packet sniffers/Probes
 - Whole packet header/contents
- Flow measurements
 - Router support
 - Network-wide measurements
- Packet sampling (sFlow)
- Trajectory sampling
- Etc.
Traffic Matrix: SNMP based methods

- Network Tomography
 - From link measurement determine traffic matrix, using temporal correlations.

- Network Tomogravity
 - Starts with a model of the traffic matrix from edge measurements.
 - Uses internal measurements to find a consistent solutions that is close to the traffic matrix that the model predicted.
Traffic Matrix: Flow based methods.

- Detailed measurement where the traffic enter and determine from the destination IP address, where the traffic will exit the network
 - Need Prefix level routing information to determine the exit point
Traffic Matrix: Method Comparison

- **SNMP based**
 - Less accurate
 - Harder to deal with multi-point destinations
 - Tomography do not.
 - Tomogravity do try to model it.
 - Measurement instrumentation/gathering is standard.

- **Flow based**
 - More accurate
 - Deal with the multi-point destinations
 - Measurement instrumentation/gathering is not standard.
 - Need to deal with huge amount of detailed measurements
Outline of the rest of the talk

- **Context**
 - What are Flows?
 - Measurement Infrastructure

- The main idea
 - Size dependent sampling
 - Optimal sampling

- How do this compare to size independent sampling?

- Billing application
IP Flow Abstraction

- **IP flow abstraction**
 - set of packets identified with “same” address, ports, etc.
 - packets that are “close” together in time

- **IP flow summaries**
 - reports of measured flows from routers
 - flow identifiers, total packets/bytes, start and end times

- Several flow definitions in commercial use
Collection System

Routers

Flow Collectors

Central Server

Flow Data
Aggregate Data
Resources in the Measurement System
Measure/Export All Traffic Flows?

- Flow volumes
 - one OC48 (2.4 Gbps Trunk) ⇒ several GB flow summaries per hour

- Cost
 - network resources for transmission
 - storage-processing at the collection system
Flow Sampling?

- **Sampling**
 - statisticians reflex action to large datasets

- **Export selected flows**
 - reduce transmission/storage/processing costs

- **Sufficiently accurate?**
 - Depends on application.
 - Traffic Engineering (where do traffic flow)
 - Traffic Analysis (application usage, etc.)
 - Billing
 - risk of overcharging (⇒ irate customers)
 - risk of undercharging (⇒ irate shareholders)
Packet Sampling and Flow Sampling

- **Packet Sampling**
 - when router can’t form flows at line rate
 - scaling at a single router

- **Flow sampling**
 - managing volume of flow statistics
 - scaling across downstream measurement infrastructure

- **Complementary**
 - could combine
 - e.g. 1 in N packet sampling + flow sampling
Usage Estimation

- Each flow i has
 - "size" x_i
 - bytes or packets
 - "color" c_i
 - combination of IP address, port, ToS etc that maps to billable stream (= customer + billing class)

- Goal
 - to estimate total usage $X(c)$ in each color c

$$X(c) = \sum_{i: c_i = c} x_i$$
Basic Ideas

- **Match sampling method to flow characteristics**
 - high fraction of traffic found in small fraction of long flows
 - sample long flows more frequently than short flows
 - large contributions to usage more reliably estimated

- **Show how to relate sampling and accuracy**
 - simple rules to achieve desired accuracy
Size independent flow sampling bad

- Sample 1 in N flows
 - estimate total bytes by N times sampled bytes

- Problem:
 - long flow lengths
 - estimate sensitive to inclusion or omission of a single large flow
Size dependent flow sampling

- Sample flow summary of size x with prob. $p(x)$
- Estimate usage X by

$$X' = \sum_{\text{sampled flows}} \frac{x}{p(x)}$$

 - boost up size x by factor $1/p(x)$ in estimate X'
 - compensate against chance of being sampled

- Chose $p(x)$ to be increasing in x
 - longer flows more likely to be sampled
 - compare size independent sampling: $p(x) = 1/N$
Statistical Properties

- Fixed set of flow sizes \{x_1, x_2, \ldots, x_n\}
 - we only consider randomness of sampling

- \(X'\) is unbiased estimator of actual usage \(X = \Sigma_i x_i\)
 - \(\Rightarrow X' = X\): averaging over all possible samplings
 - holds for all probability functions \(p(x)\)

Proof:

- \(X' = \Sigma_i w_i x_i / p(x_i)\)
 - \(w_i\) random variable
 - \(w_i = 1\) with prob. \(p(x_i)\), 0 otherwise
 - \(\Rightarrow w_i = p(x_i)\) hence \(\Rightarrow X' = \Rightarrow \Sigma_i w_i x_i / p(x_i) = \Sigma_i x_i = X\)
What is best choice of $p(x)$?

- Trade-off accuracy vs. number of samples
- Express trade-off through cost function
 - $\text{cost} = \text{variance}(X') + z^2 \text{average number of samples}$
 - parameter z: relative importance of variance vs. # samples
- Which choice of $p(x)$ minimizes cost?
 - $p_z(x) = \min \{ 1, x/z \}$
 - flows with size $\geq z$: always selected
 - flows with size $< z$: selected with prob. proportional to their size
- Trade-off
 - smaller z
 - more samples, lower variance
 - larger z
 - fewer samples, higher variance
- Will call sampling with $p_z(x)$ “optimal”
Optimal vs. size independent sampling

- NetFlow traces
 - 1000’s cable users, 1 week
- Color flows
 - by customer-side IP address c
- Compare
 - 1 in N sampling
 - optimal sampling
 - same average sampling rate
- Measure of accuracy
 - weighted mean relative error
 \[
 \frac{\sum_c |X'(c) - X(c)|}{\sum_c X(c)}
 \]
- Heavy tailed flow size distribution is our friend!
 - allows more accurate encoding of usage information
Charging and Sampling Error

- **Optimal sampling**
 - no sampling error for flows larger than \(z \)

- **Exploit in charging scheme**
 - fixed charge for small usage
 - usage sensitive charge only for usage above insensitivity level \(L \)

- **Charge according to estimated usage**
 \[
 f(X'(c)) = a + b \max\{ L, X'(c) \}
 \]
 - coefficients \(a, b \) and level \(L \) could depend on color \(c \)

- **Only usage above \(L \) needs reliable estimation**
Accuracy and Parameter Choice

- **Given target accuracy**
 - relate sampling threshold z to level L

- **Theorem**
 - $\text{Variance}(X') \leq z X$ (tight bound)
 - now assume: $z \leq \varepsilon^2 L$
 - Std.Dev. $X' \leq \varepsilon X$ if $X \geq L$
 - bound sampling error of estimated usage $> L$
 - Std.Dev. $f(X') \leq \varepsilon f(X)$
 - bound error of charge based on estimated usage

- **Bounds hold for any flow sizes \{x_i\}**
 - no assumption on flow size distribution
 - just choose $z \leq \varepsilon^2 L$
Example

- **Target parameters**
 - $L = 10^7, \varepsilon = 10\% \Rightarrow z = 10^5$

- **Scatter plot**
 - ratio estimated/actual usage vs. actual usage
 - each color c
 - observe better estimation of higher usage

- **Want to avoid**
 - ratio $> 1+\varepsilon = 1.1$
 - and
 - usage $> L = 10^7$

- **Less than 1 in 1000 “bad” points**
Compensating variance for mean

- **Aim:**
 - reduce chance of overestimating usage

- **Method:**
 - theorem gave bound: \(\text{Var}(X') \leq zX \)
 - anticipate upwards variations in \(X' \) by subtracting off multiples of std. dev.
 - charge according to
 \[
 X_s' = X' - s\sqrt{zX'}
 \]
 - again: no assumptions on flow size distribution
Example: s=1

- Scatter pushed down:
 - no points with ratio >1.1 and usage $> 10^7$
- Drawback
 - more unbillable usage
 - when $X'_s < X$
- Small unbillable usage for heavy users
 - ratio $\rightarrow 1$
 - $\text{Std.Dev.}(X')/X'$ vanishes as X grows
Example: $s=2$

- Scatter pushed down further:
 - no points with ratio > 1

- Trade off
 - unbillable usage vs. overestimation

<table>
<thead>
<tr>
<th>s</th>
<th>unbill. bytes</th>
<th>$X's > X?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.1%</td>
<td>50%</td>
</tr>
<tr>
<td>1</td>
<td>3.1%</td>
<td>3%</td>
</tr>
<tr>
<td>2</td>
<td>6.2%</td>
<td>0%</td>
</tr>
</tbody>
</table>
How to reduce unbillable usage?

- Make sampling more accurate
 - reduce z
- For unbillable fraction $< \eta$
 - chose $s \cdot z \leq \eta^2 L$
- Example:
 - $s = 2$, $\eta = 10\%$
 - reduce z
 - from 10^5 to 10^4
- Alternative
 - increase coefficient a in charge $f(X)$ to cover costs
Tension between accuracy and volume

- **Want to reduce** z
 - better accuracy, less unbillable usage

- **Drawback**
 - increased sample volume

- **Solution**
 - make billing period longer instead
 - usage roughly proportional to billing period
 - allows increased charge insensitivity level L
 - sampling production rate controlled by threshold z
 - rate $r \sum_x f(x)p_z(x)$
 - flow arrival rate r, fraction $f(x)$ of flows size x

- **Need only** $z = \varepsilon^2 L$
 - larger L allows smaller error ε for given z
Summary

- **Size dependent optimal sampling**
 - preferentially sample large flows
 - more accurate usage estimates for given sample volume
 - sample flow of size x with probability $p_z(x)$

- **Charging from measured usage X'**
 - charge $f(X') = a + b \max\{L, X'\}$
 - fixed charge for usage below insensitivity level L
 - only need to reliably estimate usage above L

- **Sampling/charging accuracy**
 - choose $z = \varepsilon^2 L$ to get standard error ε

- **Variance compensation**
 - replace X' by $X'_s = X' - \sqrt{zX'}$

- **Longer billing cycle**
 - increases L, better accuracy (ε) at given sampling rate (z)
Papers