“Friendlier Flying”: Stochastically Modeling Airport Arrival Capacities During Inclement Weather

Tasha R. Inniss,
Clare Boothe Luce Professor of Mathematics,
Trinity College

Minorities and Applied Mathematics-Connections to Industry and Government Laboratories
May 4, 2001
Goal/Motivation

- Goal: Estimate airport arrival capacity distributions during inclement weather conditions

- Why?
 - Bad weather reduces capacity below demand
 - Implicit relationship between weather and capacity
 - Stochastic nature of weather makes it difficult to deterministically predict capacity
 - Required input to a class of stochastic ground holding models
Outline

- Background
 - Discussion of a Ground Delay Program
 - Hoffman-Rifkin Static Stochastic Ground Holding (H-R) Model
- Capacity Scenarios (Arrival Capacity Distributions)
 - Conceptual Representation of ACDs
 - Generating overall distribution of ACDs
- Deriving Seasonal Distributions via “Seasonal Clustering”
- Current and Future Work
Method is needed to efficiently address capacity-demand imbalances.

To address and manage these imbalances, ATCSCC may institute ground delay programs (GDPs).

Determining the amount of delay to assign in a GDP is known as the ground holding problem (GHP).

GDP planning has become more efficient under a new collaborative process known as Collaborative Decision Making (CDM).
What is a Ground Delay Program (GDP)?

- Delayed departures
- Delayed arrivals/no airborne holding
- Delayed departures
- Delayed departures
Ground vs. Airborne Delay

- In a GDP, determining the optimal amount of ground delay to assign is known as the **Ground Holding Problem (GHP)**.

- **Conservative vs. Liberal Policies**: more ground holding vs. less ground holding (more airborne holding)

 Flights scheduled to arrive = 30; Capacity (AAR) = 20
Hoffman-Rifkin (H-R) Static Stochastic Ground Holding Model

- Determines number of flights to delay on the ground and number expected to be air delayed per unit time
- Explicitly takes into account the uncertainty of weather
- **Formulation:**
 \[
 \text{Min} \quad \sum_{t=1} \ c_g G_t + \sum_{t=1}^{T+1} c_a p_q W_{q,t} \\
 \text{subject to} \quad A_t - G_{t-1} + G_t = D_t \quad t = 1, \ldots, T+1 \\
 G_0 = G_{T+1} = 0 \\
 -W_{q,t-1} + W_{q,t} - A_t \geq -M_{q,t} \quad t = 1, \ldots, T+1 \\
 q = 1, \ldots, Q \\
 W_{q,0} = W_{q,T+1} = 0 \\
 A_t \in \mathbb{Z}_+, \ W_{q,t} \in \mathbb{Z}_+, \ G_t \in \mathbb{Z}_+ \\
 \]

- **Inputs:** aggregate demand for each time period \((D_t)\), ground delay cost factor \((c_g)\), airborne delay cost factor \((c_a)\), capacity scenarios \((Q)\) and associated probabilities \((p_q)\)
Is a capacity-demand imbalance likely?

YES

GDP Planner

GDP Parameters

Hoffman-Rifkin Model (Stochastic GH Model)

of arrival slots per unit time

CDM Procedures (RBS, Substitution, Compression)

Slot assignments of individual flights

Arrival Capacity Distribution Generator

Capacity Scenarios and Probabilities

Weather Forecast (conditions & start time)

Month (Season)

Projected Demand (build-up)

Airborne/ Ground Cost Ratio

Month (Season)
Representative Structures of Capacity Scenarios

General Arrival Capacity Distribution

2-Level ACD

2-Parameter ACD

1-Parameter ACD
Empirical (Historical) Data Sets

- Ground Delay Programs’ Data
 - Logged at ATCSCC and archived by Metron, Inc.
 - Contains GDP parameters such as duration of GDP, scope of GDP and Airport Acceptance Rate (AAR-capacity)
 - Includes 1995, 1996, 1997 GDPs at SFO
 - Can be used for performance analysis
 - Can be used to generate Capacity Probabilistic Distributions Functions (CPDFs) when weather data not available
Data (continued)

- Weather Data
 - Contained in “Surface Airways Hourly” collected by National Climatic Data Center (NCDC)
 - Contains data such as cloud ceiling height, visibility, wind direction and wind speed
 - Can be used to estimate distribution of inclement weather conditions (Instrument Flight Rules-IFR)
- Want combination of GDP data and weather data to get distribution of IFR conditions given a GDP is planned (conditional distribution)
Overall Capacity PDF with 1-Parameter ACDs

"Conditional" Distribution of Duration of IFR Conditions

\[P(S_j) = \frac{\text{frequency of } j}{\text{total sum of frequencies}} \]

- \(P(S_0) = 0.25 \)
- \(P(S_3) = 0.12 \)
- \(P(S_6) = 0.03 \)

Relative frequency histogram created by binning historical weather data for San Francisco.
Time Series Plot of Average GDP Length
Choosing Seasons of Least Cost

- Want to “cover” an entire year by a finite number of covers or seasons
- Determine which season to assign a month in a least costly fashion
- Cost (C_j) of a season j can be the sum of squared deviations between a season’s value and the values of the months contained within that season:

$$\sum_{i=1}^{n} (\text{SeasonAvg} - \text{MonthAvg}_i)^2$$

- Formulation:

$$\text{Minimize } \sum_{j=1}^{n} C_j x_j$$
$$\text{subject to } \sum_{i=1}^{n} x_j = N$$
$$\sum_{j=1}^{n} a_{ij} x_j = 1 \text{ for each month } i$$
$$x_j \in \{0,1\}$$
Cost Functions for Set Partitioning (Differences in Means)

<table>
<thead>
<tr>
<th>Sum of Squared Deviations (SoSqs)</th>
<th>(\sum_{j=1}^{m} (X_{.j} - \overline{X}.)^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized SoSqs</td>
<td>(\frac{1}{m} \sum_{j=1}^{m} (X_{.j} - \overline{X}.)^2)</td>
</tr>
<tr>
<td>Seasonal Variances</td>
<td>(\frac{1}{m-1} \sum_{j} \sum_{i} (X_{ij} - \overline{X}.)^2)</td>
</tr>
</tbody>
</table>

\(\overline{X}_{.j} \) is the average over all days \(i \) in month \(j \);
\(\overline{X}. \) is the (overall) seasonal average over all days \(i \) and all months \(j \);
\(X_{ij} \) is the GDP length on day \(i \) in month \(j \).
Cost Functions Based on Differences in EDFs

- Calculate an EDF for each month j (F_j) in a given season.
- Calculate a seasonal EDF (pooled EDF):
 \[F = \frac{1}{n} \sum_j (n_j F_j) \]
- Compute the cost of a given season by calculating a Kolmogorov-Smirnov (KS) statistic for the season:
 \[KS = \max_x \sqrt{\sum_j \left(\frac{n_j}{n} \right) \left[F_j(x) - F(x) \right]^2} \]
Post Analysis for Evaluating Sets of Seasons

- Single-Factor ANOVA with multiple comparisons

\[Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad i=1,\ldots,12 \text{ and } j=1,2,3, \quad \varepsilon_{ij} \sim N(0, \sigma^2) \]

- Single-factor ANOVA used to test if there exist statistically significant differences in means of seasons.

- Multiple comparisons used to test for equality between two seasonal means.

\[\frac{\sum_s n_s (\bar{Y}_{s.} - \bar{Y}_{..})^2}{k - 1} \]

- Mean Square Ratio:

\[\frac{\sum_s \sum_j (Y_{js} - \bar{Y}_{s.})^2}{n - k} \]
Results of Post Analysis

- ANOVA multiple comparisons’ results (for seasons resulting from set partitioning of GDP data)

<table>
<thead>
<tr>
<th>Contiguous Seasons</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr-Jun vs Jul/Aug</td>
<td>.0288</td>
</tr>
<tr>
<td>Jul/Aug vs Sep/Oct</td>
<td>.0388</td>
</tr>
<tr>
<td>Sep/Oct vs Nov-Mar</td>
<td>.0053</td>
</tr>
</tbody>
</table>

- Mean Square ratios (for seasons resulting from set partitioning of weather data)

<table>
<thead>
<tr>
<th>Contiguous Seasons</th>
<th>Mean Square Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar-Jun vs Jul-Sep</td>
<td>14.06</td>
</tr>
<tr>
<td>Jul-Sep vs Oct-Feb</td>
<td>24.39</td>
</tr>
</tbody>
</table>
Perspectives on Seasonal “Clustering”

Intra-season homogeneity
(From Set Partitioning Integer Program)

Non-contiguous seasons can be similar

Transition Period

Inter-Season Variability
(From Post Analysis using Mean Square Ratio)

Developed in dissertation and used to find seasonal distributions
Relative Frequency Histograms for Weather Seasons

Histogram for "Heavy Fog" Season (Oct-Feb)

Histogram for "Rainy" Season (Mar-Jun)

Histogram for "Summer Weather" Season (Jul-Sep)
Current and Future Work

Current Work:
- Input capacity scenarios (ACDs) and associated probabilities into H-R model
- Developed methodology to adjust ground delay appropriately in dynamic GDPs
- Created algorithm to compare model results to current operational procedures

Future Work:
- Determine seasonal distributions with arbitrary start/end days
- Model airports using 2-Parameter ACD