How Intractable is the “Invisible Hand”: Polynomial Time Algorithms for Market Equilibria

Vijay V. Vazirani
Georgia Tech
Market Equilibrium

- People want to maximize happiness
- Find prices s.t. market clears
Walras, 1874

- Pioneered mathematical theory of general economic equilibrium
Arrow-Debreu Theorem, 1954

- Celebrated theorem in Mathematical Economics
- Shows existence of equilibrium prices using Kakutani’s fixed point theorem
Arrow-Debreu Theorem is highly non-constructive

- How do markets find equilibria?
Arrow-Debreu Theorem is highly non-constructive

• How do markets find equilibria?

 – “Invisible hand” of the market: Adam Smith

 Wealth of Nations, 1776
Arrow-Debreu Theorem is highly non-constructive

- How do markets find equilibria?
 - “Invisible hand” of the market: Adam Smith, *Wealth of Nations*, 1776
 - Scarf, 1973: approximate fixed point algorithms
Arrow-Debreu Theorem is highly non-constructive

- How do markets find equilibria?
 - “Invisible hand” of the market: Adam Smith
 Wealth of Nations, 1776
 - Scarf, 1973: approximate fixed point algorithms
 - Use techniques from modern theory of algorithms
Arrow-Debreu Theorem is highly non-constructive

• How do markets find equilibria?

 – “Invisible hand” of the market: Adam Smith
 Wealth of Nations, 1776

 – Scarf, 1973: approximate fixed point algorithms

 – Use techniques from modern theory of algorithms

 Deng, Papadimitriou & Safra, 2002: linear case in P?
Market Equilibrium

- People want to maximize happiness
- Find prices s.t. market clears
History

- Irving Fisher 1891 (concave functions)
 - Hydraulic apparatus for calculating equilibrium
History

• Irving Fisher 1891 (concave functions)
 – Hydraulic apparatus for calculating equilibrium

• Eisenberg & Gale 1959
 – (unique) equilibrium exists
History

• Irving Fisher 1891 (concave functions)
 – Hydraulic apparatus for calculating equilibrium

• Eisenberg & Gale 1959
 – (unique) equilibrium exists

• Devanur, Papadimitriou, Saberi & V. 2002
 – poly time alg for linear case
History

- Irving Fisher 1891 (concave functions)
 - Hydraulic apparatus for calculating equilibrium

- Eisenberg & Gale 1959
 - (unique) equilibrium exists

- Devanur, Papadimitriou, Saberi & V. 2002
 - poly time alg for linear case

- V. 2002: alg for generalization of linear case
Market Equilibrium

• n buyers, with specified money,
• m goods (unit amount)
• Linear utilities: u_{ij} utility derived by i on obtaining one unit of j

$$U_i = \sum_j u_{ij}x_{ij}$$
Market Equilibrium

- n buyers, with specified money,
- m goods (unit amount)
- Linear utilities: u_{ij} utility derived by i on obtaining one unit of j

$$U_i = \sum_j u_{ij}x_{ij}$$

- Find prices s.t. market clears
Bang per buck

$100

$60

$20

$140

utilities
Bang per buck

$100 10 20 $20 10/20

$60 20 $40 20/40

$20 4 $10 4/10

$140 2 $60 2/60
Bang per buck

Given prices p_j, each i picks goods to maximize her bang per buck, i.e.,

$$\alpha_i = \max_j \left\{ \frac{u_{ij}}{p_j} \right\}$$
for all i: most desirable j's
• Any goods sold in equality subgraph make agents happiest

• How do we maximize sales in equality subgraph?
• Any goods sold in equality subgraph make agents happiest

• How do we maximize sales in equality subgraph?

Use max-flow!
Max flow

infinite capacities
Max flow
Idea of Algorithm

Invariant: source edges form min-cut
(agents have surplus)

Want: prices s.t. sink edges also form min-cut

Gradually raise prices, decrease surplus, until 0
ensuring Invariant initially

- Set each price to $1/n$
- Assume buyers’ money integral
How to raise prices?

• Ensure equality edges retained

\[\frac{u_{ij}}{p_j} = \frac{u_{il}}{p_l} \]
How to raise prices?

• Ensure equality edges retained

\[\frac{u_{ij}}{p_j} = \frac{u_{il}}{p_l} \]

• Raise prices proportionately

\[\frac{p_j}{p_l} = \frac{u_{ij}}{u_{il}} \]
initialize: $x = 1$
$x = 2$: another min-cut

$x > 2$: Invariant violated
reinitialize: $x = 1$
unfreeze
$x = 1, \quad x \uparrow$
buyers

\[m \]

goods
buyers

\[m \]

equality

subgraph

\[p \]

goods

ensure

Invariant
\[m \quad \quad \quad p_x \]

\[x = 1, \quad x \uparrow \]
\[\Gamma(S) \{ \} S \]

\[x \cdot p(S) = m(\Gamma(S)) \]
$\Gamma(S)$ \{ \} \{ \} S

$x \cdot p(S) = m(\Gamma(S)) \implies \text{freeze } S$
prices in S are market clearing
\[\Gamma(S) \quad \text{frozen} \]

\[S \quad \text{active} \]

\[x = 1, \quad x \uparrow \]
$\Gamma(S)$ \hspace{1cm} S \hspace{1cm} \text{frozen}

\text{active}

p_x

$x = 1, \quad x \uparrow$
\(\Gamma(S) \)	\(S \)	frozen
---|--|--
---|--|--

active

\[px \]

\[x = 1, \quad x \uparrow \]
new edge enters equality subgraph
unfreeze component

frozen

active
• All goods frozen => terminate

(market Clears)
• All goods frozen => terminate
 (market clears)

• When does a new set go tight?
\[x^* := \min_{\emptyset \neq S \subseteq A} \left\{ \frac{m(\Gamma(S))}{p(S)} \right\} \]
Try $S = A$ (all goods)

Let $x = \frac{m(B)}{p(A)}$.

Clearly, $x \geq x^*$

If s is min-cut, $x = x^*$ and $S^* = A$.
Otherwise, $x > x^*$.
Sufficient to recurse on smaller graph
Termination

• Prices in S^* have denominators $\leq \Delta = nU^n$,

 \[U = \max_{ij} \{u_{ij}\} \]

• Terminates in $Mn^2 \Delta^2$ max-flows.
Polynomial time

• Pre-emptively freeze sets that have small surplus (at most \mathcal{E}).
\[\Gamma(S^*) \quad S^* \]

freeze
add ε to prices and find new min-cut
• Next freezing: prices must increase $\geq \varepsilon$.

• Problem: at end, surplus $\neq 0$.
• Next freezing: prices must increase $\geq \varepsilon$.

• **Problem:** at end, surplus $\neq 0$.

• But, surplus $\leq n\varepsilon$.
initial surplus

M
\[\varepsilon = \frac{M}{2n} \]
final surplus \leq n\varepsilon = \frac{M}{2}
Polynomial time

Theorem: $O(n^2 (n \log U + \log Mn^2))$

max-flow computations suffice.
Question

• Is main algorithm, i.e., without pre-emptive freezing, polynomial time?
Question

• Is main algorithm, i.e., without pre-emptive freezing, polynomial time?

• Strongly polynomial?
Post-mortem
Primal-Dual Schema

Highly successful algorithm design technique from exact and approximation algorithms
Central Idea Behind Primal-Dual Schema

Two processes making local improvements (relative to each other) and achieving global objective
Post-mortem

- “primal” variables: flow in equality subgraph
- “dual” variables: prices
- algorithm: primal & dual improvements
Post-mortem

- “primal” variables: flow in equality subgraph
- “dual” variables: prices
- algorithm: primal & dual improvements
- nonzero flow from j to i \(\Rightarrow p_j = \frac{u_{ij}}{\alpha_i}\)
Post-mortem

- “primal” variables: flow in equality subgraph
- “dual” variables: prices
- algorithm: primal & dual improvements
- nonzero flow from j to i $\Rightarrow p_j = u_{ij} / \alpha_i$

“complementary slackness condition”
Post-mortem

- “primal” variables: flow in equality subgraph
- “dual” variables: prices
- algorithm: primal & dual improvements
- algorithm inspired by Kuhn’s primal-dual algorithm for bipartite matching
“Primal-Dual-Type” Algorithms

• Formal mathematical setting?

• Analogous setting for primal-dual algorithms: LP-Duality Theory
Concave utilities

- Buyers get satiated by goods
- Fix prices => each buyer has unique optimal bundle
Concave utilities

• Buyers get satiated by goods

• Fix prices => each buyer has unique optimal bundle

Economy of communication!

Distributed market clearing
Concave utility function

utility

amount of j
Piece-wise linear, concave

utility

amount of j
PTAS for concave fn.
Piece-wise linear, concave

utility

amount of j
Differentiate

\[\text{rate} = \frac{\text{utility}}{\text{amount of } j} \]
f_{ij} for buyer i, good j

rate

rate = utility/unit amount of j
Fix price of j, then utility/$\$ \text{ given by}$

\[
\frac{f_{ij}}{p_j}
\]

utility derived, \quad u(x) = \int_{0}^{x} \frac{f_{ij}(y)}{p_j} \, dy
fix price of j

utility

piecewise-linear, concave
V. 2002:
Rate at which \(i \) derives happiness depends on fraction of budget spent on \(j \).
Theorem: Equilibrium price is unique, and can be computed in polynomial time
Theorem: Equilibrium price is unique, and can be computed in polynomial time.

(Not unique in traditional model, even for piece-wise linear case)
Can generalize notion of “market clearing” -- assume that buyers have utility for money.
Does the spending constraint model measure up to traditional theory?
f_{ij} for buyer i, good j

rate

$\$100$

continuous, decreasing rate function
utility derived, \[u(x) = \int_0^x \frac{f_{ij}(y)}{p_j} dy \]

Strictly concave function.

Each buyer has unique optimal bundle.
Devanur & V., 2003

Equilibrium exists for cts., decreasing rate fns. (Proof uses Brauwer’s fixed point theorem),
Equilibrium exists for cts., decreasing rate fns. (Proof uses Brauwer’s fixed point theorem), and prices are unique.
Devanur & V., 2003

Equilibrium exists for cts., decreasing rate fns. (Proof uses Brauwer’s fixed point theorem), and prices are unique.

PTAS for computing equilibrium.
Devanur & V., 2003

Extend model to Arrow-Debreu setting.
Devanur & V., 2003

Extend model to Arrow-Debreu setting.

Equilibrium exists.

(Proof uses Kakutani’s fixed point theorem.)
Algorithmic Game Theory

• Mechanism design: find equilibria that ensure truthful, fair functioning of agents, and are efficiently computable.

• Approximations: deal with NP-hardness, stringent game-theoretic notions
Q: Distributed algorithm for equilibria?

• Appropriate model?

• Primal-dual schema operates via local improvements
• Global optimality via local improvement

• Exploit in distributed setting

Kelly, Low, Lapsley, Doyle, Paganini ...
TCP congestion control

primal process: packet rates at sources

dual process: packet drop at links

AIMD + RED solves utility maximization problem in limit
Kelly, ’97: charging, rate control and routing for elastic traffic

Kelly & V. 2002:
It is essentially a market equilibrium question, and generalizes Fisher’s problem!
Kelly, ’97: charging, rate control and routing for elastic traffic

Kelly & V. 2002:
It is essentially a market equilibrium question, and generalizes Fisher’s problem!

Q: Polynomial time alg?
Develop an algorithmic theory of market equilibria, via polynomial time exact and approximation algorithms
• w.r.t. prices p, i sorts segments according to utility/\$, and partitions into classes
- w.r.t. prices p, i sorts segments according to utility/$\$, and partitions into classes

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
w.r.t. prices p, i sorts segments according to utility/$,$ and partitions into classes

$\begin{array}{cccccc}
\hline
\text{ } & \\
\text{ } & \\
\text{ } & \\
\text{ } & \\
\text{ } & \\
\end{array}$

$\begin{array}{cccccc}
$50 & $30 & $40 & $40 & $60 & \\
\hline
\end{array}$

Assume i has 100
• w.r.t. prices p, i sorts segments according to utility/$$, and partitions into classes

$\text{forced} \quad \uparrow \quad \text{flexible} \quad \text{undesirable}$

$\begin{array}{cccccc}
\text{---} & \text{---} & \text{---} & \text{---} & \text{---} & \text{---} \\
$50 & $30 & $40 & $40 & $60 & $60 \\
\end{array}$
• **Invariant 1:** Approach eq. from below

• **Invariant 2:** Forced allocations follow sorted order
• Invariant 1: Approach eq. from below

• Invariant 2: Forced allocs follow sorted order
 – simultaneously, for all i
• **Invariant 1:** Approach eq. from below

• **Invariant 2:** Forced allocs follow sorted order

 – *simultaneously*, for all i

 – as prices change, allocs may become undesirable
- **Invariant 1**: Approach eq. from below

- **Invariant 2**: Forced allocs follow sorted order

 - *simultaneously, for all* i

 - as prices change, allocs may become undesirable

 Deallocate
• **Invariant 1:** Approach eq. from below

• **Invariant 2:** Forced allocs follow sorted order

 – *simultaneously*, for all \(i \)

 – as prices change, allocs may become undesirable

Deallocate - **exponential time??**
- **Invariant 1**: Approach eq. from below

- **Invariant 2**: Forced allocs follow sorted order
 - *simultaneously*, for all \(i \)

 - as prices change, allocs may become undesirable

 Deallocate - **exponential time**??

 Reduce prices
• **Invariant 1:** Approach eq. from below

• **Invariant 2:** Forced allocs follow sorted order

 – *simultaneously*, for all i

 – as prices change, allocs may become undesirable

Deallocate - exponential time??

Reduce prices - measure of progress??
Algorithm

Maintains both Invariants

- deallocations

- monotonicity of prices
forced flexible undesirable
Can ensure prices