Considerations for Robust Haptic Interaction with Virtual Dynamic Systems

Ed Colgate
Department of Mechanical Engineering
Northwestern University

IMA Haptics Workshop, June 14, 2001
A grand challenge...

- Complex, physics-based simulations
- Simple percepts
- CAD, Medical
- Arcade joysticks
- Few sophisticated users
- Many unsophisticated users

Our target
Imagine a piece of software – a “haptic environment editor and simulator.” To use it one must:

- Tune to the selected display device
- Create parts
 - Geometry
 - Bulk dynamic properties (mass, elasticity, damping)
 - Surface properties (texture, coefficients of friction and restitution)
- Interact!
Challenges
which stem from this vision

- Device independence
- Performance
 - Dynamic range of impedances (“Z-width”)
- Stability
- “Physics-based” simulation
 - With a “hard” real-time constraint
Framework for addressing challenges

- **Passivity**
 - Impedance presented to human should be passive

- **Why?**
 - NOT because we expect haptic displays to be passive
 - NOT because we believe that humans are passive
 - RATHER, because focus on passivity:
 - Reflects primacy of physical *law* over physical *behavior*
 - Provides access to powerful theoretical tools (e.g. Circle Criterion)
 - Provides a means of breaking down system into manageable pieces
An early passivity result

\[\begin{align*}
&b > T \frac{1}{2(1 - \cos \omega T)} \Re \left\{ 1 - e^{-j\omega T} \right\} H(e^{j\omega T}) \\
&\quad \text{for } 0 \leq \omega \leq \omega_N
\end{align*} \]
Passivity of a virtual wall

- Let \(H(z) = K + B \frac{z^{-1}}{Tz} \)
 - \(T \): sample rate
 - \(K \): virtual stiffness
 - \(B \): virtual damping

- For passivity: \(b > \frac{KT}{2} + B \)
Experimental results

J. Michael Brown, MS Thesis

- Area **under** each curve corresponds to virtual walls that operators could not destabilize.

- Stability does **not** correspond to passivity, yet:

- Physical damping has a pronounced benefit
Implications for haptic display design

- At a given frequency ω, the mechanical impedance of a haptic display may be written as:

$$Z(j\omega) = B(\omega) + j\left[\omega M(\omega) - \frac{K(\omega)}{\omega}\right]$$

Most of us would agree on the imaginary part:

0 (structurally stiff)

ε (low moving mass)

But what about the real part?
High frequency damping: the key to dynamic range

Normalized Damping $B(\omega)$

Bandwidth of voluntary motion

Bandwidth of tactile sensing

Frequency (Hz)

Laboratory for Intelligent Mechanical Systems
Aside: why cobots?
Key advantage of cobots: dynamic range
From virtual walls to complex simulations: the virtual coupling concept

operator

haptic display

from virtual walls to complex simulations: the virtual coupling concept

operator

haptic display

operator

haptic display

Passive Tool Simulation

"Virtual Coupling"

operator

1 - e^{-Ts} s

u

1

ms + b

s

v

H(z)

unilateral constraint

1

s

x_s

T

x

F_1 k

H(z)

x_{1k}

T

x

F_2 k

E(z)

v_{2k}
Virtual coupling: passivity

- Recall conditions for passivity of the virtual wall:
 \[b > \frac{T}{2} \frac{1}{1 - \cos \omega T} \Re \left\{ 1 - e^{-j \omega T} H(e^{j \omega T}) \right\} \quad 0 \leq \omega \leq \omega_N \]

- Passivity of an environment \(E(z) \) seen through virtual coupling \(H(z) \) requires:
 - The same condition as above, plus:
 - \(E(z) \) must be discrete-time passive
Virtual coupling: significance

- Establishing passivity is easier:
 - Easier to establish discrete-time passivity of simulation alone than continuous-time passivity of system as a whole

- Simulation \((E(z)) \) may be developed without regard for details of operator, display device, or virtual coupling:
 - This is the key to device independence
 - Virtual coupling \((H(z)) \) is initially tuned to display device
 - Simulation \((E(z)) \) is designed subject only to discrete-time passivity constraint
But it doesn’t work in practice!

- Passive simulations must be implicit
 - Implicit integration techniques are slow!
- In practice, virtual environment simulations are:
 - Explicit
 - Time-delayed
 - Nonlinear
- Virtual environment simulations are never discrete time passive!
An improved framework: energy management
Brian Miller’s work

- Key idea much the same as with earlier passivity work:
 - Bound energy growth (negative damping) due to simulation
 - Ensure that haptic display damping outpaces energy growth

- No longer possible to establish continuous-time passivity, but:
 - Possible to establish stability under the assumption of passive human dynamics
 - Possible to establish “cyclo-passivity”

- Suitable bounds on energy growth can be found for a variety of linear and nonlinear virtual environments
Energy management framework
Transformed haptic system

- \hat{G}: transformation of G constructed to have same level of damping – δ – as D (haptic display device)

- \hat{V}: transformation of V forced by transformations of G and E. \hat{V} has positive damping of level γ.

- \hat{E}: transformation of E having the property that $\hat{E} + \alpha$ is discrete time passive
Energy management in the transformed system

- Relations exist between δ, γ and α that guarantee system stability. Specifically:

 $$\alpha < \frac{\delta \gamma}{\delta + \gamma}$$

- Device independence is recovered

- Reasonable bounds on α can be found for many virtual environments, including those that:
 - Are delayed
 - Exhibit piecewise continuous nonlinearities
For more detail...

A case study: impulse-based simulation of rigid body systems

Beeling Chang and Brian Miller

- “Impulse-based simulation” introduced by Mirtich and Canny
 - All contact modeled using impulses (i.e., no forces between bodies)
 - Collision detection via Lin-Canny closest features algorithm
 - Scheduler ensures that only one collision at a time is handled

- Some nice features for use with haptics:
 - Very fast
 - Employs realistic models of friction and restitution (thus, prospects are good that energy growth can be bounded)
The “real-time” constraint

- What “real-time” means for graphics/animation:
 - Average integration time step exceeds average computational time
 - Furthermore, integration time step may well be variable

- What “real-time” means for haptics:
 - Every integration time step must exceed its associated computational time
 - Furthermore, the integration time step is typically fixed
 - We call this “hard real-time”

- Can impulse-based simulation be adapted for hard real-time?
The key problems with hard real-time impulse-based simulation

- Impact state determination
- Multiple simultaneous contacts
A strategy that seems to work...

- If the impulse at one point of contact is large enough to change the bodies’ velocities, and advance the simulation to a valid (non-overlapping) state, let it do so.
- Else, if a constraint force at this point of contact is sufficient to advance the simulation to a valid (non-overlapping) state, let it do so.
- Else, model contacts with springs and dampers (or solve the LCP).
A closer look at contact state determination

- A typical collision:
 - “previous state”
 - no overlap
 - no extra computation
 - “next state”
 - overlap
 - “exact state”
 - no overlap
 - extra computation
A closer look at contact state determination (2)

- A problematic collision (bodies are receding at beginning of time step):

 - “previous state”
 - no impulse!
 - “stuck” simulation

 - “next state”
 - overlap

 - “exact state”
 - no overlap
 - impulse
 - extra computation
Contact state determination is important!

- Key to advancing simulation
 - Use of previous state often results in “stuck” simulation
 - Use of next state results in overlap
 - “Inter-sample” state is needed

- Also important in energy growth
 - “Inter-sample” state increases energy growth (experimentally confirmed)
 - Bounds have been found for some simple cases (e.g., direct impact with no tangential impulse)
 - Effect is comparable in magnitude to that introduced by a time step delay
Conclusions

- The physical world presents us with a vast range of dynamic behaviors
- The haptic display of such wide-ranging behaviors leads to some interesting challenges:
 - Dynamic range
 - Guaranteed stability
 - Device independence (or, at least, “atomic” design)
 - “Hard” real-time simulation
- Energy management is a powerful framework for the design and analysis of haptic systems, but…
 - Parameter limitations are unavoidable
 - Melding of psychophysical data and system design parameters is needed