The Mathieu equation with complex parameters

Consider the Mathieu equation

$$w'' + (\lambda - 2h^2 \cos(2z)) w = 0.$$

For $h^2 \in \mathbb{R}$, let

$$\lambda_1(h^2) < \lambda_2(h^2) < \lambda_3(h^2) < \ldots$$

denote the eigenvalues of λ such that the Mathieu equation admits nontrivial odd solutions with period π. The functions λ_m are real-analytic. What happens if we continue these functions analytically into the complex h^2-plane?

The eigenvalue functions can be continued analytically throughout the complex h^2-plane when we avoid a certain countable set that has no finite point of accumulation (h^2-coordinates of branch points.) The eigenvalue functions approach a finite value at these branch points.
Since the eigenvalue function $\lambda_n(h^2)$ is analytic, it can be expanded in a power series at $h^2 = 0$. Let ρ_n be the radius of convergence of this expansion. What is the growth order of ρ_n as $n \to \infty$? It is easy to show that ρ_n grows at least linearly with n. F. W. Schäfke conjectured that the ρ_n grow like n^2 as $n \to \infty$. I proved that

$$\liminf \frac{\rho_n}{n^2} \geq kk'K^2 = 2.0418\ldots,$$

where the modulus k of the complete elliptic integrals is determined by $2E = K$.
Call two positive integers \(m, n \) equivalent, if there exists a curve starting at \(h^2 = 0 \) and ending at \(h^2 = 0 \) such that \(\lambda_m(h^2) \) when continued analytically along the curve becomes \(\lambda_n(h^2) \). F. W. Schäfke proved that there is only one equivalence class for the Mathieu equation. Let us look at the proof.

For \(k \in \mathbb{N} \), define

\[\tau_k = \min_{n > k} \rho_n. \]

Lemma 1 Let \(M \) be an equivalence class and \(k \in \mathbb{N} \). Then the function

\[\sigma_k(h^2) = \sum_{n \in M, n \leq k} \lambda_n(h^2) \]

which is analytic in a neighborhood of \(\mu = 0 \) can be extended analytically onto the disk \(\{ h^2 : |h^2| < \tau_k \} \).

Proof: Let \(\phi(t) \) be a curve starting at \(h^2 = 0 \) and ending at \(h^2 = 0 \) with \(|\phi(t)| < \tau_k \) and which does not pass through branch points. Then analytic extension
along ϕ defines a bijection $\pi : M \to M$. We have $\pi(m) = m$ for $m > k$. This shows that σ_k is one-valued in the disk apart from the finitely many branch points. Since these points are removable singularities for σ_k, the lemma is proved.

Lemma 2 Let M, k, σ_k be as in Lemma 1. Then

$$|\sigma_k''(0)| \leq 8k \frac{1}{\tau_k}$$

Proof Note that eigenpairs (λ, μ) satisfy

$$|\text{Im } \lambda| \leq 2|h^2|.$$

Therefore

$$|\text{Im } \sigma_k(h^2)| \leq 2k \tau_k$$

for $|h^2| < \tau_k$. By Lemma 1 and a modified form of Cauchy’s estimate, we obtain the statement of the lemma.

From Lemma 2, we obtain
Theorem 3 Let M be an equivalence class. Then

$$\sum_{n \in M} \lambda''(0) = 0.$$

Now $\lambda''(0) < 0$ and $\lambda''(0) > 0$ for all $n \geq 2$. Therefore N is the only equivalence class.