Optimization models for the financial valuation of supply chain risks

Alan King
Math Sciences, IBM Research, Yorktown Heights, NY

Joint work with Shabbir Ahmed (Ga. Tech) and Teemu Pennanen
Helsinki School of Economics, Finland
Supply Chain Risk

- Demand/supply is variable in time, quantity, and quality.
- Inventories accumulate — product, equipment, personnel, even financial obligations.
- Profits are variable, ie RISKY.
Supply Chain Risk

• Demand/supply is variable in time, quantity, and quality.
• Inventories accumulate — product, equipment, personnel, even financial obligations.
• Profits are variable, i.e. RISKY.

Semiconductor Fab:

• 0-3 month WIP forecast has std. dev. ~ 75% of mean, and order/qualify machine tools takes 1-2 years.
• How to measure and compensate Fab’s risk exposures?
Basic approach to financial valuation:

- Observe market prices in related contracts.
- Hedge contract risk by trading “equivalents”.
- Market price of risk (~ shareholders’ risk).
Basic approach to financial valuation:

- Observe market prices in related contracts.
- Hedge contract risk by trading “equivalents”.
- Market price of risk (≈ shareholders’ risk).

Complications for Supply Chain risk valuation:

- Role of “non-market” information.
- Non-financial incentives and risks (market share, service-levels,...)
- Negotiation.
- Meta-effects: state-transitions due to scale, chunking and complexity, stochastics, industrial organization, etc.
OBJECTIVE: Present *optimization approach* to financial valuation and explore its use as tool in valuation of supply chain risks.

- “Supply chain” view of options pricing.
- Application to pricing risk in quantity-flexible contracting.
- Calibration to market.
- Final words
Options are used to manage financial risks... can one apply similar techniques to supply chain risk?
Options are used to manage financial risks... can one apply similar techniques to supply chain risk?

Supply chain view of options pricing theory

- Option “payout” is function of “underlying”
- Trading in underlying can “(super)replicate” option payouts
- Price of option equals “cost of manufacturing” option payouts through trading.
Simple Options Pricing Example

- IBM stock price takes values \(\{Z_n^{IBM}\} \)
- IBM call option w/ strike $120 pays \(F_n = [Z_n^{IBM} - 120]^+ \)

\[
\begin{align*}
Z_1^{IBM} &= 200 \\
p_1 &= .99 \\
F_1 &= 80 \\
Z_0^{IBM} &= 100
\end{align*}
\]

option value = ??

\[
\begin{align*}
Z_2^{IBM} &= 50 \\
p_2 &= .01 \\
F_2 &= 0
\end{align*}
\]
Option price equals cost of trading strategy that “replicates” payoffs \(F_n = [Z_n^{IBM} - 120]^+ \)

Formulation as LP:

<table>
<thead>
<tr>
<th>asset</th>
<th>price</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock:</td>
<td>(Z_n^{IBM})</td>
<td>(\theta_n^{IBM})</td>
</tr>
<tr>
<td>bond:</td>
<td>(Z_n^B = 1)</td>
<td>(\theta_n^B)</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\min_{(\theta)} \quad & F_0 \\
\text{st:} \quad & Z_0 \cdot \theta_0 = F_0 \\
& Z_n \cdot \theta_0 \geq F_n \quad (n = 1, 2)
\end{align*}
\]
\[
\begin{align*}
\max_{(q)} & \quad \sum_{n=1}^{2} q_n F_n \\
\text{st:} & \quad q_0 = 1 \\
& \quad q_n \geq 0 \quad (n = 1, 2) \\
& \quad q_0 = \sum_{n=1}^{2} q_n \quad \text{(bond)} \\
& \quad q_0 Z_0^{\text{IBM}} = \sum_{n=1}^{2} q_n Z_n^{\text{IBM}} \quad \text{(stock)}
\end{align*}
\]
\begin{align*}
\text{max}_{(q)} \quad & \sum_{n=1}^{2} q_n F_n \\
\text{st:} \quad & q_0 = 1 \\
& q_n \geq 0 \quad (n = 1, 2) \\
& q_0 = \sum_{n=1}^{2} q_n \quad \text{(bond)} \\
& q_0 Z_0^{\text{IBM}} = \sum_{n=1}^{2} q_n Z_n^{\text{IBM}} \quad \text{(stock)}
\end{align*}

- q are the weights of a probability measure Q
\[
\begin{align*}
\max_{(q)} & \quad \sum_{n=1}^{2} q_n F_n \\
\text{st:} & \quad q_0 = 1 \\
& \quad q_n \geq 0 \quad (n = 1, 2) \\
& \quad q_0 \sum_{n=1}^{2} q_n \quad \text{(bond)} \\
& \quad q_0 Z_0^{\text{IBM}} = \sum_{n=1}^{2} q_n Z_n^{\text{IBM}} \quad \text{(stock)}
\end{align*}
\]

- \(q\) are the weights of a probability measure \(Q\)
- \(Q\) makes stock price \(\{Z_n^{\text{IBM}}\}\) into “martingale”
Dual of LP (Ross, 1996)

\[
\begin{align*}
\max_{(q)} & \quad \sum_{n=1}^{2} q_n F_n \\
\text{st:} & \quad q_0 = 1 \\
& \quad q_n \geq 0 \quad (n = 1, 2) \\
& \quad q_0 = \sum_{n=1}^{2} q_n \quad (\text{bond}) \\
& \quad q_0 Z_0^{\text{IBM}} = \sum_{n=1}^{2} q_n Z_n^{\text{IBM}} \quad (\text{stock})
\end{align*}
\]

- \(q\) are the weights of a probability measure \(Q\)
- \(Q\) makes stock price \(\{Z_n^{\text{IBM}}\}\) into “martingale”
- Option value is \(\max_{Q} \mathbb{E}_{Q} [F_T]\)
Martingale for Simple Example

There is only one possible solution to Dual.

\[Z_0^{\text{IBM}} = 100 \]

\[\text{option value} = \frac{1}{3}80 + \frac{2}{3}0 \]

\[p_1 = 0.99 \]
\[q_1 = \frac{1}{3} \]
\[Z_1^{\text{IBM}} = 200 \]
\[F_1 = 80 \]

\[p_2 = 0.01 \]
\[q_2 = \frac{2}{3} \]
\[Z_2^{\text{IBM}} = 50 \]
\[F_2 = 0 \]
Replicating Portfolio for Simple Example

Determine replicating portfolio from knowledge of dual optimal value

\[
\begin{align*}
\theta^B_0 + 100 \theta^{IBM}_0 &= 80/3 \\
\theta^B_0 + 200 \theta^{IBM}_0 &\geq 80 \quad (n = 1) \\
\theta^B_0 + 50 \theta^{IBM}_0 &\geq 0 \quad (n = 2)
\end{align*}
\]

Solution:

<table>
<thead>
<tr>
<th>asset</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>stock:</td>
<td>(\theta^{IBM}_0 = 160/300) shares</td>
</tr>
<tr>
<td>bond:</td>
<td>(\theta^B_0 = -80/3) loan</td>
</tr>
</tbody>
</table>
Replicating Portfolio for Simple Example

\[p_1 = 0.99 \]
\[q_1 = \frac{1}{3} \]
\[\theta_0^{\text{IBM}} = \frac{160}{300} \]
\[\theta_0^B = -\frac{80}{3} \]
\[\text{option value} = \frac{80}{3} \]

\[p_2 = 0.01 \]
\[q_2 = \frac{2}{3} \]

\[Z_1^{\text{IBM}} = 200 \]
\[F_1 = 80 \]
\[200 \times \frac{160}{300} - \frac{80}{3} = 80 \]

\[Z_2^{\text{IBM}} = 50 \]
\[F_2 = 0 \]
\[50 \times \frac{160}{300} - \frac{80}{3} = 0 \]
General setup for discrete probability space

- Vector stochastic price process $\{Z_t\}_{t=0}^{T}$, with $Z^0_t := 1$ as the “bond”.
- Distinct paths at time t correspond to nodes $n \in \mathcal{N}_t$, with parent node $a(n) \in \mathcal{N}_{t-1}$ and child nodes $c(n) \subset \mathcal{N}_{t+1}$.
- Expectation: $E^Q[Z_t] := \sum_{n \in \mathcal{N}_t} q_n Z_n$
Using Stochastic Programming to (Super-)Replicate Claims

General setup for discrete probability space

- Vector stochastic price process \(\{Z_t\}_{t=0}^T \), with \(Z_0^0 := 1 \) as the "bond".
- Distinct paths at time \(t \) correspond to nodes \(n \in \mathcal{N}_t \), with parent node \(a(n) \in \mathcal{N}_{t-1} \) and child nodes \(C(n) \subset \mathcal{N}_{t+1} \).
- Expectation: \(E^Q [Z_t] := \sum_{n \in \mathcal{N}_t} q_n Z_n \)

Optimization model (super-)replicates cash flows \(F_n \) at minimum price

- portfolio holdings \(\theta_n \)
- trades \(\Delta \theta_n := \theta_n - \theta_{a(n)} \).

\[
\begin{align*}
\min_{\theta} & \quad F_0 \\
\text{st:} & \quad Z_0 \cdot \theta_0 = F_0 \\
& \quad Z_n \cdot \Delta \theta_n = -F_n \quad (n \in \mathcal{N}_t, t \geq 1) \\
& \quad Z_n \cdot \theta_n \geq 0 \quad (n \in \mathcal{N}_T)
\end{align*}
\]

This is called a "stochastic (linear) program".
Fundamental Pricing Theorem

Theorem 1 There is a trading strategy that super-replicates F_n iff there exists a martingale probability measure Q, in which case the option price is

$$F_0^* = \max_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]$$ (2)

Proof is by strong LP duality. Here is the dual:

$$\max(q) \quad \sum_{n=1}^{N} q_n F_n$$

$$\text{st:} \quad q_0 = 1$$

$$q_n \geq 0 \quad (n \in \mathcal{N}_T)$$

$$q_n Z_n = \sum_{m \in \mathcal{C}(n)} q_m Z_m \quad (n \in \mathcal{N}_t, t = 0, \ldots, T - 1)$$

Details in (King, 1998). Continuous state extensions in (King-Korf, 2002).
Options Pricing is a Dual Method

The basic method as outlined in Harrison-Pliska (1981):

1. Describe stochastic price process \(\{Z_t\} \), with prices normalized so that the bond's value is 1 in all states.

2. Find a dual solution \(Q \), a probability measure satisfying martingale equalities

\[Z_t = E^Q \left[Z_{t+1} | Z_t \right] \]

3. Calculate payouts \(\{F_t\} \)

— may need to know \(Q \), eg, when \(F \) is an American-style option.

4. Option price is

\[F_0 = E^Q \left[\sum_t F_t \right] \]

5. (Super-)Replicating portfolio is

\[\theta_0 = \partial Z_0 E^Q \left[\sum_t F_t \right] \]
Options Pricing is a Dual Method

The basic method as outlined in Harrison-Pliska (1981):

1. Describe stochastic price process \(\{Z_t\} \), with all prices normalized so that the bond’s value is 1 in all states.

2. Find a dual solution \(Q \), a probability measure satisfying martingale equalities \(Z_t = E^Q [Z_{t+1} | Z_t] \)

3. Calculate payouts \(\{F_t\} \)
 — may need to know \(Q \), eg, when \(F \) is an American-style option.

4. Option price is \(F_0 = E^Q [\sum_t F_t] \)

5. (Super-)Replicating portfolio is \(\theta_0 = \partial Z_0 E^Q [\sum_t F_t] \)

This describes the seller, who receives \(F_0 \) in order to generate \(F_n \).

... but what about the buyer?
The Arbitrage Interval

Theorem 2 *The maximum price that the buyer will pay for stochastic cashflows* F_n *is*

$$F_0^* = \min_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]$$ \hspace{1cm} (3)

Proof is by reversing signs in (2).
The Arbitrage Interval

Theorem 3 The maximum price that the buyer will pay for stochastic cashflows F_n is

$$F_0^* = \min_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]$$

(4)

Proof is by reversing signs in (2).

Buyers and sellers have different prices:

- Seller’s minimum offering price is $F_0^w := \max_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]$
- Buyer’s maximum acceptable price is $F_0^b := \min_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]$
- One has $F_0^b < F_0^w$, unless Q is unique.

Arbitrage interval: $[F_0^b, F_0^w]$.
The Arbitrage Interval

Theorem 4 The maximum price that the buyer will pay for stochastic cashflows F_n is

$$F_0^* = \min_{Q \in 	ext{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]$$ \hfill (5)

Proof is by reversing signs in (2).

Buyers and sellers have different prices:

- Seller’s minimum offering price is $F_0^w := \max_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]

- Buyer’s maximum acceptable price is $F_0^b := \min_{Q \in \text{MPM}} E^Q \left[\sum_{t=1}^{T} F_t \right]

- One has $F_0^b < F_0^w$, unless Q is unique.

“Arbitrage interval”: $[F_0^b, F_0^w]$.

... we conclude that neither seller nor buyer want to trade options!
Let F_0 be the market price of the claim.

- Investor *buys* if $F_0 < E^Q [\sum_{t=1}^{T} F_t]$
- Investor *sells* if $F_0 > E^Q [\sum_{t=1}^{T} F_t]$

Buyers and Sellers have *different* martingale measures.
Reasons to Trade Options

Let F_0 be the market price of the claim.

- Investor buys if $F_0 < E^Q \left[\sum_{t=1}^{T} F_t \right]$
- Investor sells if $F_0 > E^Q \left[\sum_{t=1}^{T} F_t \right]$

Buyers and Sellers have different martingale measures.

Trading occurs because buyers and sellers differ:

1. Transactions costs and/or taxes.
2. Views of the risk of the option.
3. Endowments and liabilities.
Reasons to Trade Options

Let F_0 be the market price of the claim.

- Investor buys if $F_0 < E^Q [\sum_{t=1}^{T} F_t]$
- Investor sells if $F_0 > E^Q [\sum_{t=1}^{T} F_t]$

Buyers and Sellers have different martingale measures.

Trading occurs because buyers and sellers differ:

1. Transactions costs and/or taxes.

 . . . only makes the Arbitrage Interval wider.

2. Views of the risk of the option.

3. Endowments and liabilities.
Reasons to Trade Options

Let F_0 be the market price of the claim.

- Investor buys if $F_0 < E^Q \left[\sum_{t=1}^{T} F_t \right]$
- Investor sells if $F_0 > E^Q \left[\sum_{t=1}^{T} F_t \right]$

Buyers and Sellers have different martingale measures. Trading occurs because buyers and sellers differ:

1. Transactions costs and/or taxes.
2. Views of the risk of the option.

 ... no difference unless seller is willing to take a loss.
3. Endowments and liabilities.
Reasons to Trade Options

Let F_0 be the market price of the claim.

- Investor buys if $F_0 < E^Q [\sum_{t=1}^{T} F_t]$
- Investor sells if $F_0 > E^Q [\sum_{t=1}^{T} F_t]$

Buyers and Sellers have different martingale measures. Trading occurs because buyers and sellers differ:

1. Transactions costs and/or taxes.
2. Views of the risk of the option.
3. Endowments and liabilities.

...the most important reasons to buy/sell options are

- differences in endowments: initial portfolios
- differences in liabilities: future cash flows correlated with the value of the underlying

Alan King - Math Sciences, IBM Research - IMA Sept 2002 – p.15/27
This optimization approach to options pricing appears in *(King, Math. Programming, 2002)*

General features are:

1. Options can be replicated iff the price process supports a Martingale Probability Measure.
2. Buyers and Sellers of options must have different MPM
3. Differences in MPM arise from differences in endowments and future liabilities.
Risk analysis of Quantity-Flexible Supply Contracts (Ahmed and King, 2002).

- QFS contract between single buyer, single seller.
- Fixed price per unit; quantity demanded is variable.
- Seller may pay penalties if out-of-stock.
- Examples: IBM Printer Division, Sun, HP.

Buyer pays “Franchise Fee” to compensate for seller’s risk and loss of pricing power.

...options pricing provides a guide to how to compute this fee.
Two parts to modeling QFS franchise fee:

1. Production to meet demand or pay unmet demand penalty
2. Trading in correlated securities to hedge risks

We will consider supplier’s point-of-view, but for simplicity we model only capacity expansion decisions.
Production model:

- Buyer's demand: \(\{d_t\}^T_{t=1} \)
- Supplier's marginal profit: \(s_t \)
- Shortage penalty: \(\gamma_t \)
- Capacity expansion charge: \(\alpha_t \)
- Capacity maintenance: \(\delta_t \)
- Capacity expansion decision: \(X_t \)
- Unmet demand variable: \(U_t \)

Market model: \(Z_t \) and \(\theta_t \), etc.
Supplier’s Stochastic Program

\[\min_{\theta, x, u, v} \quad V \]
\[\text{st:} \]
\[Z_0 \theta_0 = V - \alpha_0 X_0 \]
\[Z_n \theta_n = Z_n \theta_{a(n)} + s_n d_n - \alpha_n X_n \]
\[-\gamma_n U_n - \delta_n \sum_{m \in A(n)} X_m \quad n \in \mathcal{N}_t, 1 \leq t \leq T - 1 \]
\[Z_n \theta_n = Z_n \theta_{a(n)} + s_n d_n \]
\[-\gamma_n U_n - \delta_n \sum_{m \in A(n)} X_m \quad n \in \mathcal{N}_T \]
\[Z_n \theta_n \geq 0 \quad n \in \mathcal{N}_T \]
\[\sum_{m \in A(n)} X_m + U_n \geq d_n \quad n \in \mathcal{N}_t, 1 \leq t \leq T \]
\[X_n \geq 0 \quad n \in \mathcal{N}_t, 0 \leq t \leq T - 1 \]
\[U_n \geq 0 \quad n \in \mathcal{N}_t, 1 \leq t \leq T \]
Martingale Assumption

Assume martingale measure Q is known.

Theorem 5 The franchise fee is $F_0 = \sum_{t=1}^{T} \sum_{n\in\mathcal{N}_t} d_n [v^*_n - q_n s_n]$ where v^* is the optimal solution of the linear program

$$
\begin{align*}
\max & \quad \sum_{t=1}^{T} \sum_{n\in\mathcal{N}_t} d_n v_n \\
\text{s.t.} & \quad \sum_{m\in\mathcal{D}(n)} v_n \leq C(n) \quad n \in \mathcal{N}_t, 0 \leq t \leq T - 1 \\
& \quad 0 \leq v_n \leq D(n) \quad n \in \mathcal{N}_t, 1 \leq t \leq T
\end{align*}
$$

(7)

with $C(n) := (q_n \alpha_n + \sum_{m\in\mathcal{D}(n)} q_m \delta_m)$, and $D(n) = q_n \gamma_n$.

1. Initialize $v^*_n = 0$ for all n.
2. Sort $\{d_n\}$ such that $d_{n1} > d_{n2} > \cdots > d_{nK}$.
3. Repeat the following steps for $k = 1, \ldots, K$:
 - Let $\mathcal{N}_k = \{n|d_n = d_{nk}\}$,
 - Repeat the following steps until $\mathcal{N}_k = \emptyset$:
 - For each $n \in \mathcal{N}_k$, calculate
 \[
 v'_n = \min\{D(n), \min_{m \in \mathcal{Q}(n)} \{C(m) - \sum_{q \in \mathcal{D}(m)} v^*_q\}\}.
 \]
 - Let $m = \text{argmax}_{n \in \mathcal{N}_k} \{v'_n\}$, set $v^*_m = v'_m$ breaking ties arbitrarily, set $\mathcal{N}_k \leftarrow \mathcal{N}_k \setminus \{m\}$.
4. Return v^*_n, optimal solution.
Primal view of QFS

Take dual of in “market” variables, to isolate role of martingale measure

\[
\min_{X,U} \max_{q \in \mathcal{Q}} \beta_0 C_0 X_0 + \sum_{t=1}^{T} \sum_{n \in \mathcal{N}_t} q_n [C_n X_n + \gamma_n U_n - s_n d_n]
\]

s.t.

\[
\sum_{m \in A(n)} X_m + U_n \geq d_n \quad n \in \mathcal{N}_t, 1 \leq t \leq T
\]

\[
X_n \geq 0 \quad n \in \mathcal{N}_t, 0 \leq t \leq T - 1
\]

\[
U_n \geq 0 \quad n \in \mathcal{N}_t, 1 \leq t \leq T
\]

(8)

Shows role of \(Q \) in “risk-neutral discounting” of risky profits.

Note that fixing \(Q \) results in an underestimate of franchise fee.
Calibration of Martingale Measure

Where may we look for probability measure for this analysis?
... calibration (King and Penannen, 2002; see also Avellenadas and collaborators (1999-2002)) F^i, $i = 1, \ldots, k$ have bid/ask prices $F^i_b < F^i_a$, payoffs F^i_n.
Let L_n be the “liability” cash flow in state n.

\[
\min_{v_+, v_-} \sum_{t=1}^{T} \sum_{n \in \mathcal{N}_t} q_n L_n + (v_+ + v_-)
\]
\[
\begin{align*}
q_0 & = 1, \\
q_n & \geq 0 \quad n \in \mathcal{N}_T, \\
\sum_{m \in \mathcal{C}(n)} y_m Z_m & = q_n Z_n \quad n \in \mathcal{N}_t, \ t = 1, \ldots, T - 1, \\
\sum_{t=1}^{T} \sum_{n \in \mathcal{N}_t} q_n F_n & \leq F_a + v_+, \\
\sum_{t=1}^{T} \sum_{n \in \mathcal{N}_t} q_n F_n & \geq F_b - v_-, \\
v_+, v_- & \geq 0
\end{align*}
\]
Primal View of Calibration Model

\[
\begin{align*}
\min_{\theta, \xi_+, \xi_-} & \quad V \\
\text{st:} & \quad Z_0 \cdot \theta_0 + (F_a \cdot \xi_+ - F_b \cdot \xi_-) = V \\
& \quad Z_n \cdot (\theta_n - \theta_{a(n)}) - F_n \cdot (\xi_+ - \xi_-) = L_n \quad n \in \mathcal{N}_t, \ t = 1, \ldots, T, \\
& \quad Z_n \cdot \theta_n \geq 0 \quad n \in \mathcal{N}_T, \\
& \quad \xi_+, \xi_- \in [0, 1].
\end{align*}
\]

1. The primal hedges the liability with smallest cash.
2. Market-traded options can be bought/sold, but positions are bounded.
3. The dual variable is a martingale probability measure.
4. The dual maximizes the integrated cash flow of the liabilities plus penalties for market-traded option prices being too far over the ask or too far under the bid.
Investing in market traded options automatically calibrates Q — so long as these positions are bounded.

Surprise: there is no need to specify probability measure!

May not be able to correlate all QFS risks with market.

- Q is martingale on market $\mathcal{M} \subset \mathcal{N}$
- could average production flows conditional on \mathcal{M} and solve discounted calibration/QFS problem
- or could simply fix $q_n = q_m / |\mathcal{N}_t(m)| \forall n \in \mathcal{N}_t(m)$ for all “market” nodes $m \in \mathcal{M}$
Lots of people have helped us in this project

- Dave Jensen
- Samer Takriti
- Lisa Korf
- Olga Streltchenko
- Teemu Penannen
- R.T. Rockafellar
- Vasant Naik