Finite Element Mapping for Spring Network Representations of the Mechanics of Solids

Andrei A. Gusev

Institute of Polymers, Department of Materials, ETH Zurich, Switzerland

• Spring network method
 – Atomistic & mesoscopic models
• Finite element mapping procedure for defining spring network models
 – Regular grids and unstructured networks
 – Piecewise homogeneous composite media
• Structural parts from short fiber reinforced polymers
 – Properties of local fiber orientational states
• Phase separated block copolymers
 – Problems with constitutive equations
• Conclusions and perspectives
Atomic Lattice Models

- **Elasticity and lattice dynamics of crystals**
 - Born & von Kármán (1910), Born (1912), Born & Huang (1954)

Simple Cubic Lattice

Diamond Crystal Structure

- **Vibration of long chain molecules**
 - Kirkwood (1939)

\[
U = \frac{1}{2} \alpha \sum (\Delta l)^2 + \frac{1}{2} \beta \sum (\Delta \varphi)^2
\]

- **Forcefield for molecular level simulations**
2D Spring Network Models

- **Isotropic systems**
 - Bond length & bond angle terms
 \[U = \frac{1}{2} \alpha \sum_{\text{bonds}} (\Delta l)^2 + \frac{1}{2} \beta \sum_{\text{angles}} (\Delta \varphi)^2 \]
 - A limited range of \(-1 \leq \nu \leq \frac{1}{3}\)

- **Anisotropic systems**
 \[U = \frac{1}{2} \sum_{\text{bonds}} \alpha (\Delta l)^2 + \frac{1}{2} \sum_{\text{angles}} \beta (\Delta \varphi)^2 \]
 - No systematic framework

- **Frequently used for fracture simulation**
 - e.g., power law acoustic emission
 - Numerically efficient
 - Sequential bond removal

\[\{\alpha, \beta\} \Rightarrow \mathbf{C} \]
3D Spring Network Models

• Isotropic materials
 – Bond length & bond angle terms
 \[U = \frac{1}{2} \sum_{\text{bonds}} \alpha (\Delta l)^2 + \frac{1}{2} \sum_{\text{angles}} \beta (\Delta \varphi)^2 \]
 – Nearest neighbor simple cubic lattice
 Poisson’s ratio \(v = 0 \)
 – Including next nearest neighbors
 still problems with rotational invariance

• Anisotropic materials
 – In general, 21 independent \(C_{ik} \) constants
 – No systematic framework

• Concerns regarding physical significance
Finite Element Approach

- **Dividing continuum in small discrete elements**
 - Courant (1943)
 - Nodal displacements \(\mathbf{d}^T = \{u_1, \ldots, u_N\} \)
 - System strain energy \(U = \frac{1}{2} \mathbf{d}^T \mathbf{K} \mathbf{d} \)

- **Systematic approach**
 - Turner, Clough, Martin, and Topp (1956)
 - Later became known as the Finite Element Method

- **Element formulation**
 - Displacement vector \(\mathbf{d}^e_T = \{u_1, \ldots, u_M\} \)
 - Strain energy \(U^e = \frac{1}{2} \mathbf{d}^e_T \mathbf{K}^e \mathbf{d}^e \)

- **Assembly**
 - From \(U = \Sigma U^e \), one obtains \(\mathbf{K} = \Sigma \mathbf{K}^e \)
Element Level

- **Element stiffness matrix K^e**
 - Symmetric dense 8x8 matrix
 - Geometry: shape & size
 - Material: elastic constants C
- **Consistency**
 - For any uniform strain ε
 \[U^e = \frac{1}{2} V \varepsilon C \varepsilon \]
 - Define as $u_a = \varepsilon r_a$
 - Compose $d^e = \{u_1, u_2, u_3, u_4\}$
 - The identity
 \[
 \frac{1}{2} V \varepsilon C \varepsilon \equiv \frac{1}{2} d^e \mathbf{K}^e d^e
 \]
 always holds
Assembly Level

• Assembled stiffness matrix K
 – Symmetric sparse 18x18 matrix
 – Consists of 2x2 blocks K_{ab}
 – $K_{ab} = 0$ if a & b doesn’t interact
 – All K_{5b} & K_{a5} are fully assembled

• Total strain energy
 – $U = \frac{1}{2} d^T K d$
 – where $d^T = \{u_1, \ldots, u_9\}$

• Translational invariance
 – For any row (or column)
 $$K_{aa} = - \sum_{a \neq b} K_{ab}$$
Spring Network Representation

• **Spring stiffness matrix**
 – Displacement vector $d^s T = \{u_1, u_2\}$
 – Elastic energy $U^s = \frac{1}{2} d^s T K^s d^s$
 – Spring stiffness matrix
 $$K^s = \begin{bmatrix}
 \kappa^s & -\kappa^s \\
 -\kappa^s & \kappa^s
 \end{bmatrix}$$
 – where κ^s is a 2x2 matrix

• **Assembly**
 – From $U = \Sigma U^s$, one has $K = \Sigma K^s$
 – Translational invariance
Finite Element Mapping

• Parent serendipity family rectangular elements
 – A 2x2 assembly
 – Node 5 interacts with all 9 nodes
 – 2x2 blocks K_{5a} are fully assembled
 • will never receive further contributions
 • are thus representative for larger assemblies

• General mapping procedure
 – Use off-diagonal K_{5a} to define spring matrices κ^s
 $$\kappa^s_{5a} \equiv K_{5a}$$

• For infinite systems
 assembled FE & spring K will always be the same
2D isotropic triangular LSM

- Imposed plain strain material behavior
 - with two Lame constants λ & μ
 - A single distinct spring with κ^s
 - which is common to 2 triangles
- An assembly of 2 adjacent triangles
 - A total of 8 degrees of freedom
 - An 8x8 assembled matrix K
 - By using the mapping procedure, we extract

$$
\kappa' = \frac{1}{2\sqrt{3}} \begin{pmatrix}
3\lambda + 5\mu & 0 \\
0 & \mu - \lambda
\end{pmatrix}
$$

- For a special case of solids with $\lambda = \mu$
 - Classical scalar LSM, derived by Hrennikoff (1941), Ashurst & Hoover (1976)
Serendipity Family Linear Brick Elements

- **81x81 assembled stiffness matrix \(K \)**
 - Central node \(a \) interacts with all nodes
 - 3x3 blocks \(K_{ab} \) are fully assembled
 - Use them to define spring matrices \(\kappa \)

- **Isotropic solids**
 - Cubic bricks, Lame constants \(\lambda \) & \(\mu \)
 - There are 3 distinct, basic springs

\[
\begin{array}{c|c|c|c}
\hline
\kappa_1 & \frac{4}{9}(\lambda + \mu) & \frac{1}{18}(5\lambda + 8\mu) & \frac{1}{36}(4\lambda + 7\mu) \\
\kappa_2 = \kappa_3 & -\frac{2}{9}(\lambda + \mu) & -\frac{1}{18}(\lambda - 2\mu) & -\frac{1}{72}(\lambda - 5\mu) \\
\end{array}
\]
Composite Media

• Composite finite elements
 – On the basis of the integral definition
 \[K^e \equiv \int (B^T DB) dV \Rightarrow fK^e_{\text{inc}} + (1 - f)K^e_{\text{mat}} \]
 – \(B^e \) is geometrical, strain-displacement matrix
 – \(D^e \) is material, stress-strain matrix
 – Exact for linear elements (\(B^e = \text{const} \))

• Composite springs
 – On the basis of the series connection premise
 \[\frac{1}{\kappa^s_{\alpha}} = \frac{f}{\kappa_{\alpha}^{\text{inc}}} + \frac{1-f}{\kappa_{\alpha}^{\text{mat}}} \]
Piecewise Homogeneous Media with Spherical and Cylindrical Inclusions

- **Cubic unit cells**
 - Inclusion fraction $f = 0.5$

- **Periodic cubic grids**
 - Matrix: $E = 3$ GPa, $\nu = 0.35$
 - Inclusions: $E = 70$ GPa, $\nu = 0.2$
 - Serendipity linear bricks
 - $N \times N \times N$ grids, N from 4 to 161
Conclusions and Perspectives

- **Finite element mapping procedure** *(AAG, Phys. Rev. Lett. 034302)*
 - Isotropic and anisotropic media
 - Regular and unstructured networks
 - Exact mapping for any discrete system
 - Appealing opportunities for composite media
 - No meshing
 - Physically motivated local constitutive equations
- **Mixed form formulations, viscoelasticity, plasticity** *(tangent K_T), etc.*
- **Nano-structured materials**
 - Complex morphology block copolymers, cell membranes, etc.
 - Linking atomic & mesoscopic scales